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Executive Summary 
 
In decision making under uncertainty, the decision maker has to make optimal decisions throughout a 
horizon with incomplete information. Over the considered decision horizon, a number of stages are defined 
and each stage represents a point in time where decisions are made or where uncertainty partially or totally 
vanishes. According to the number of stages considered in the optimization problem we can distinguish 
between two-stage and multi-stage stochastic problems.  In a two-stage approach, the plan for the entire 
multi-period planning horizon is determined before the uncertainty is realized, and only a limited number of 
recourse actions can be taken afterwards. In contrast, a multi-stage approach allows revision of the planning 
decisions as more information regarding the uncertainties is revealed across the planning horizon.  
 
Regarding stochastic optimization applied to hydro-thermal coordination, the two-stage approach only finds 
applications for short term operational planning. For medium and long-term studies, a multi-stage stochastic 
approach is more suitable because, in practice, the system operator or hydro plant companies are monitoring 
the state of the dam continuously and can take new decisions (stages) at any time given the actual and 
historical inflow information. 
 
The disadvantage of multi-stage stochastic optimization is that the simulation time increases exponentially 
when more stages are added due to an increase in the dimensionality of the mathematical problem, and 
even when a few number of stages are added it can result in a problem impossible to solve without using 
reduction or decomposition techniques. 
 
To help solve this dimensionality issue some algorithms have been proposed and this paper explores three 
of them: 
 

1) Scenario Reduction 
2) Stochastic Dual Dynamic Programming (SDDP) 
3) Hanging Branches 

 
Scenario reduction techniques only finds applications for a few number of stages and a reduced uncertainty, 
so it is not an option when the user wants to evaluate many stages and increased uncertainty. 
 
SDDP (or DDP) is the method currently used in many countries where hydro-thermal coordination is 
paramount. It allows the user to evaluate many stages and uncertainty. 
 
The Hanging Branches method was researched and developed at Energy Exemplar Adelaide’s office during 
2013 – 2015. The idea behind this method is to formulate the equivalent reduced SDDP multi-stage tree using 
scenario-wise decomposition techniques plus non-anticipativity constraints. 
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The comparison table between these three methods is showed below. 
 

 Scenario reduction SDDP Hanging Branches 

Documented in literature? Yes Yes No. Method was 
developed at Energy 
Exemplar 

Recursive vs Non-recursive* Non-recursive Recursive Recursive 
Multi-stage tree exploration No resampling Some SDDP versions resample 

the tree allowing multiple 
exploration paths 

No resampling 

Speed solution An equivalent SDDP tree is 
impossible to solve using 
today’s available computers 

It uses decomposition 
techniques and parallel 
resolution of independent sub 
problems to improve 
simulation performance. 

It should have 
equivalent speed to 
SDDP and much faster 
than scenario 
reduction. 

Linear or Integer? Linear or MIP Linear Only Linear or MIP 
Implemented in PLEXOS? Yes No Yes. 

*Recursive: at the beginning of each stage, the decision maker has a perfect insight on the inflow scenario that will be observed at that stage 
*Non - Recursive: inflow scenarios are revealed after the release policy is taken 

 
Hanging Branches method is the method that will ultimately replace SDDP. Initial benchmarks between both 
methods, documented in this paper, using small multi-stage stochastic trees show that the objective function 
values are identical. Following the tests shown here more development work was undertaken throughout 
2016-17 and the method’s results benchmarked against full sized datasets confirming the accuracy of the 
results.  
 
Additional developments supporting the Hanging Branches method have been undertaken related to 
automating the creation of the required hanging branches in the stochastic tree reading historical inflow 
information. This was necessary because, for large stochastic trees, it is unpractical to create a csv file 
manually with the required uncertainty. The developments undertaken were: 
 

a) Historical apertures. Where the Hanging Branches are created randomly sampling the historical inflow 
information at each stage. 
 

b) PARMA time series. A more powerful option than a) since the hanging branches are be created from 
past information so, for example, ‘wet’ observed scenarios are more probably to remain wet in the 
future. This is achieved using a periodic ARMA time series (PARMA). 
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1 Introduction 
Power systems having both hydro-electric and thermal generation require a systematic and coordinated 
approach to determine an optimal policy for dam operations. The goal of a hydro-thermal planning tool is to 
minimize the expected thermal costs across the simulation period. These types of problems generally require 
stochastic analysis to deal with inflow uncertainty. This can increase the mathematical size of the problem 
and can easily become cumbersome to solve.  
 
This whitepaper reviews three different algorithms of stochastic programming to solve this problem and how 
these techniques can be applied to hydro-thermal scheduling problem and introduces the method developed 
at Energy Exemplar. In addition, a case study solved using SDDP and the proposed method is done and a 
comparison is provided. 
 

2 The Challenge 
The systematic coordination of a system composed of both hydro-electric and thermal plants requires 
determining an operational strategy that for each period of the planning horizon produces a scheduling plan 
of generation. This strategy minimizes the expected operational cost along the period, which is mainly 
composed of fuel costs plus penalties for failure in load supply. The problem becomes complex to solve 
because generally in hydro systems: 
 

 Natural inflows are stochastic processes. 
 Availability of water stored in dams is limited. 
 There are complex cascading hydro systems. 
 Existing water usage policies and environmental releases such as irrigation settlements. 

 
Water as a fuel supply is cost-free, but its opportunity cost is fundamental to finding the optimal strategy for 
operations. This issue creates the need for a decision in each time period. Storage cannot be drained too low, 
which might incur generation shortfalls or excessive thermal output. On the other hand, we also want to 
avoid spillage of water and lost generation opportunities. Figure 1 summarizes the dilemma a hydro power 
planner faces to operate a dam. 
 

 
Figure 1: Diagram showing the dilemma hydro power planner faces under uncertainty. 
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3 The Formulation 
A mathematical optimization tool can find a hydro releasing policy that minimizes the expected operational 
thermal cost by formulating an optimization problem such as the following: 
 

 ሽݏݐݏ݋ܥ ݈ܾ݁ܽ݅ݎሼܸܽ ݊݅ܯ
Subject to: 

 ݊݋݅ݐܽݑݍܧ ݈݁ܿ݊ܽܽܤ ݕ݃ݎ݁݊ܧ
 ݏݐ݅݉݅ܮݓ݋݈ܨ

 ݏݐ݅݉݅ܮ݊݋݅ݐܽݎ݁݊݁ܩ

releasett :݈݁ܿ݊ܽܽܤ ݋ݎ݀ݕܪ QQvv  inflow1  

 
Where the hydro balance equation shows the link between decisions in both the present and future.  
 
Since water is free (no fuel cost) it is necessary to specify a final condition to minimise thermal costs along 
the simulation period, and to avoid the storage being completely drained. These final conditions can be 
represented as a target or a proxy for opportunity costs such as a deviation from targets, usually known as 
the future cost function or scrap value function.  
 

4 Stochastic Optimization 
In decision making under uncertainty, the decision maker must make optimal decisions throughout a decision 
horizon with incomplete information. Over the considered decision horizon, many stages are defined and 
each stage represents a point in time where decisions are made or where uncertainty partially or totally 
vanishes. The amount of information available to the decision maker is usually different from stage to stage. 
According to the number of stages considered in the optimization problem we can distinguish between: 
 

 Two-stage stochastic problems. 
 Multi-stage stochastic problems. 

 
The stochastic problem is graphically represented as a scenario tree. 
 
4.1 Scenario Tree Representation 

A scenario tree consists of nodes and lines grouped in stages as showed in Figure 2. Each node in the scenario 
tree represents a possible state and it is a point in time where decisions are made.  
 
The lines in the scenario tree are called “leaves” and represents the possible outcomes for the random 
variables so each of them has a probability associated. The sum of probabilities associated to each node is 
unity.  
 
A path from the root node to any other node describes one realization of the stochastic process from the 
present time to the period that node appears. A path over the entire planning horizon is called a scenario.  
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Figure 2 shows a scenario tree consisting of 15 nodes, eight scenarios and three stages. This scenario tree 
represents a decision-making process where the decisions are re-evaluated four times (three stages plus the 
root node) along the planning horizon according to the revealed information at each stage. 

 
Figure 2: Scenario Tree representation 

Two-stage Stochastic Problem 

Two-stage applies to a decision-making problem where decisions are made in two stages and there exists 
uncertainty represented by a set of scenarios or samples. It can be assumed that two different decision 
variable vectors: x and y are involved in this problem. Decision x is made before knowing the actual value of 
the scenarios, while y is determined after knowing the actual value of the scenario.  
 
Decision y depends on the decision x previously made. The decision-making process is as follows: 

1. Decision x is made. 
2. The uncertainty is revealed. 
3. Decision y is made. 

 
In this decision-making process, two kinds of decision are made: 

1. First-stage or ‘here-and-now’ decisions (Decision x). These decisions are made before the realization 
of the stochastic process. Hence, variables representing here-and-now decisions do not depend on 
each realization of the stochastic process.  
 

2. Second-stage or ‘wait-and-see’ decisions (Decision y). These decisions are made after knowing the 
actual realization of the stochastic process. Consequently, these decisions depend on each 
realization vector of the stochastic process. If the stochastic process is represented by a set of 
scenarios, a second stage decision variable is defined for each single scenario considered.  
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For all these decisions to be optimal, they need to be derived simultaneously by solving a single optimization 
problem, so that the relationships among the decision variables are properly accounted for. 

Multi-stage Stochastic Problem 

In some cases, decision-making problems have more than two stages, and the two-stage stochastic 
programming problem showed above is not appropriate to represent them. This fact motivates the use of 
multi-stage stochastic programming problems. The decision-making process for a multi-stage stochastic 
problem with r stages is the following: 
 

1. Decisions x1 are made. 
2. Partial uncertainty is revealed. 
3. Decisions x2 are made. 
4. Partial uncertainty is revealed 
5. Decisions x3 are made. 
. . . 
2r-2. Uncertainty is revealed. 
2r-1. Decision xr are made. 

 
This decision framework for a multi-stage problem is conveniently visualized using a scenario tree diagram 
like the tree in Figure 2. 
 

4.2 Stochastic Problem Formulation: Two-stage vs Multi-stage 

In a two-stage approach, the plan for the entire multi-period planning horizon is determined before the 
uncertainty is realized, and only a limited number of recourse actions can be taken afterwards. In contrast, a 
multi-stage approach allows revision of the planning decisions as more information regarding the 
uncertainties is revealed along the planning horizon. Consequently, the multi-stage model is a better 
characterization of the dynamic planning process, and provides more flexibility than does the two-stage 
model. 
 
Figure 3 shows an expected comparison when the same optimization problem is solved using simple average 
deterministic, two-stage stochastic optimization, and multi-stage stochastic optimization. As can be 
observed, the expected cost is lower in a multi-stage problem when the number of stages increases because 
the decision maker has opportunity to re-evaluate his initial decision as additional information arrives. 
 
The disadvantage of multi-stage stochastic optimization problems is that the dimensionality increases 
exponentially when more stages are added and even when a few number of stages are added it can be 
impossible to solve without using reduction or decomposition techniques because of large dimensionality 
resulting problems. 
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Figure 3: Comparison between expected costs and simulation times solving the problem in deterministic, 2 stages and multi-stage  

 
Regarding stochastic optimization applied to hydro-thermal coordination, the two-stage approach only finds 
applications for short term operational planning. For medium and long-term studies, a multi-stage stochastic 
approach is more suitable because, in practice, the system operator or hydro plant companies are monitoring 
the state of the dam continuously and can take new decisions (stages) at any time given the actuals and 
historical inflow information.  
 
4.3 Stochastic Problem Formulation: Node vs Scenario-wise Decomposition 

A stochastic programming problem can be mathematically formulated using either a node-variable 
formulation or a scenario-variable formulation. The first formulation relies on variables associated with 
decision points while the second one relies on variables associated with scenarios. 
 
Consider the example summarized in Figure 4 which shows a multi-stage stochastic problem where at each 
stage there are two possible outcomes for the inflow: Wet and Dry. 

 
Figure 4: Scenario tree 

 

Node formulation 

The node-variable formulation of this problem is as follow: 
ଵ(ܴଵଵ)ܥሼ ݊݅ܯ (ܲ + ଶ(ܴଶଵ)ܥଶଵሾ݌ + ଷ(ܴଷଵ)ܥଷଵ݌ + ଷ(ܴଷଶ)ሿܥଷଶ݌

+ ଶ(ܴଶଶ)ܥଶଶሾ݌ + ଷ(ܴଷଷ)ܥଷଷ݌ +  ଷ(ܴଷଵ)ሿሽܥଷଵ݌
Subject to: 

ଵܸଵ = ଴ܸଵ - ܴଵଵ + ܫଵଵ 
ଶܸଵ = ଵܸଵ - ܴଶଵ + ܫଶଵ 
ଷܸଵ = ଶܸଵ - ܴଷଵ + ܫଷଵ 
ଷܸଶ = ଶܸଵ - ܴଷଶ + ܫଷଶ 
ଶܸଶ = ଵܸଵ - ܴଶଶ + ܫଶଶ 
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ଷܸଷ = ଶܸଶ - ܴଷଷ + ܫଷଷ 
ଷܸସ = ଶܸଶ - ܴଷସ + ܫଷସ 

Energy Balance 
Storage Capacity 
Max Capacity 
 
Where: 

௜ܸ,௞: End volume at stage i, scenario k 
ܴ௜,௞: Storage release at stage i, scenario k 
 ௜,௞: Inflow at stage i, scenario kܫ
 .௜,௞: Probability of scenario k at stage i݌
 ൫ܴ௜,௞൯: Thermal cost that results from release policy ܴ௜,௞ܥ
 

Scenario-wise Decomposition (SWD) or scenario-variable formulation 

The Scenario-wise Decomposition formulation of this problem is as follow: 
 

ଶ(ܴଶଵ)ܥ+ଵ(ܴଵଵ)ܥଶଵሾ݌×ଵଵ݌ሼ ݊݅ܯ (ܲ + ଷ(ܴଷଵ)ሿܥ + ଶ(ܴଶଶ)ܥ+ଵ(ܴଵଶ)ܥଶଶሾ݌×ଵଵ݌ + ଷ(ܴଷଶ)ሿܥ
+ ଶ(ܴଶଷ)ܥ+ଵ(ܴଵଷ)ܥଶଵሾ݌×ଵଶ݌ + ଷ(ܴଷଷ)ሿܥ + ଶ(ܴଶସ)ܥ+ଵ(ܴଵସ)ܥଶଶሾ݌×ଵଶ݌ +  ଷ(ܴଷସ)ሿሽܥ

Subject to: 
ଵܸଵ = ଴ܸଵ - ܴଵଵ + ܫଵଵ 
ଶܸଵ = ଵܸଵ - ܴଶଵ + ܫଶଵ 
ଷܸଵ = ଶܸଵ - ܴଷଵ + ܫଷଵ 
ଵܸଶ = ଴ܸଶ - ܴଵଶ + ܫଵଶ 
ଶܸଶ = ଵܸଶ - ܴଶଶ + ܫଶଶ 
ଷܸଶ = ଶܸଶ - ܴଷଶ + ܫଷଷ 
ଵܸଷ = ଴ܸଷ - ܴଵଷ + ܫଵସ 
ଶܸଷ = ଵܸଷ - ܴଶଷ + ܫଶସ 
ଷܸଷ = ଶܸଷ - ܴଷଷ + ܫଷସ 
ଵܸସ = ଴ܸସ - ܴଵସ + ܫଵସ 
ଶܸସ = ଵܸସ - ܴଶସ + ܫଶସ 
ଷܸସ = ଶܸସ - ܴଷସ + ܫଷସ 

Energy Balance 
Storage Capacity 
Max Capacity 

଴ܸଵ= ଴ܸଶ= ଴ܸଷ= ଴ܸସ 
ଵܸଵ= ଵܸଶ= ଵܸଷ= ଵܸସ 
ଶܸଵ= ଶܸଶ 
ଶܸଷ= ଶܸସ 
ଷܸଵ, ଷܸଶ, ଷܸଷ, ଷܸସ free 

 
 
Where: 

௜ܸ,௞: End volume at stage i, scenario k 
ܴ௜,௞: Storage release at stage i, scenario k 
 ௜,௞: Inflow at stage i, scenario kܫ
 .௜,௞: Probability of scenario k at stage i݌
 ൫ܴ௜,௞൯: Thermal cost that results from release policy ܴ௜,௞ܥ
 
Scenario-wise decomposition requires a larger number of variables and constraints including those marked 
in blue above called “non-anticipativity”. These conditions guarantee that decisions cannot be dependent on 
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the scenario realization. They are logical constraints related to availability of information at any decision point 
in time. Red circles in Figure 4 shows non-anticipativity variables that need to be enforced at each node. 
 
4.4 Recourse vs Non-recursive Multi-stage Stochastic Problem 

The decision model should be designed to allow the user to adopt a decision policy that can respond to events 
as they unfold. To formulate a multi-stage problem with dynamic stochastic data during time, emphasis has 
to be placed on the decision to be made today, given present resources, future uncertainties and possible 
recourse actions in the future.  
 
Depending on the availability of information on the uncertain parameters at the beginning of each stage in 
the scenario tree, different recourse actions are defined for them. 
 
It is possible to identify two types of decision depending on the availability of the information at the beginning 
of each stage: 

 
1. Recursive: At the beginning of each stage, the decision maker has a perfect insight on the inflow 

scenario that will be observed at that stage. Thus, the decisions can be adjusted for different inflow 
scenarios. 
 

2. Non-recourse: If inflow scenario values are revealed after the release policy is taken. 
 

Recursive multi-stage 

The recursive multi-stage can be represented in the following scenario tree Figure: 

 
Figure 5: Scenario tree for recursive multi-stage 
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Non - Recursive multi-stage 

The non - recursive multi-stage can be represented in the following scenario tree Figure: 
 

 
Figure 6: Scenario tree for non-recursive multi-stage 

 
The scenario tree representation doesn’t say if the multi-stage problem is recursive or non-recursive so in 
addition to the diagram it is necessary to specify what type of recourse actions are available. 
 
The following figure compares both approaches applied to stochastic multi-stage hydro problems where end 
volumes have to be decided given uncertainty in future inflows. 

 
Figure 7: Recursive vs non-recursive multi-stage stochastic problems 
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4.5 Stochastic multi-stage hydro dimensionality issue 

When using multi-stage stochastic optimization, many possible scenarios can be generated as shown in 
Figure 8. For such a high number of scenarios, it is impossible to numerically obtain a solution for the multi-
stage optimization problem. Different techniques have been introduced in the literature to help solve this 
problem and commonly involve scenario tree reduction or a more simplified tree solved with decomposition 
techniques. 
 

 
Figure 8: Multi Stage dimensionality issue 

 

5 Algorithms to solve stochastic hydro-thermal coordination 

5.1 Multi-stage tree reduction 

PLEXOS implements scenario reduction techniques as an option for solving these problems. These techniques 
use strategies to reduce the number of scenarios in the optimization problem using algorithms for 
constructing a multi-stage scenario tree out of a given set of scenarios. 
 
Since generating a very small number of scenarios by Monte Carlo simulation is not desired because less 
scenarios give less information, the objective is to lose minimum information by the reduction process 
applied to the complete set of scenarios.  
 
The disadvantage of this technique is that it is necessary to reduce the tree to a very small tree to make it 
mathematically solvable by current solvers. In most real cases, the resultant tree doesn’t represent the 
uncertainty well. 
 
5.2 Stochastic Dual Dynamic Programming 

Stochastic Dual Dynamic Programming (also called simple “Dual Dynamic Programming”) is a method 
developed in the 1970s （Read，1979）where the hydro temporal coupling decisions are broken and 
replaced by the concept called the Future Cost Function. 
 
The hydro problem at each stage becomes: 
 

Objective function ܼ(ݒ௧ିଵ
∗ ) = min(ܩܥ +  ௧) (1)ߙ

Hydro Constraints ݒ௧ = ௧ିଵݒ + ܫ − ܴ →  (2) ߨ
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 v୫୧୬ ≤ v ≤ v୫ୟ୶ (3) 
 Gh = ρ ∙ q (4) 
Generation Constraints Gmin ≤ G ≤ Gmax (5) 
Load supply ෍ G = D (6) 

  
Where:  

 α: Future Cost Function (FCF) 
 ௧: stored volume at the end of stage tݒ
 ௧ିଵ: initial volume at stage t, or stored volume at the end of stage t-1ݒ
R: Release or outflow volumes (turbined and spilled) 
I: Inflow volumes (lateral inflow plus releases from upstream plants) 
 ௠௜௡: Minimum storage (if required)ݒ
 ௠௔௫: Maximum storageݒ
G: Energy production  
Gmax: Maximum generation capacity 

 
An iterative approach is needed to create the Future Cost Function with cuts that approximate the real future 
cost function with a piecewise linear function (see Figure 10) that samples the storage at “interesting” states. 
One cut is created at each iteration and the method stops when a convergence criterion is met.  
 

Schematic representation of SDDP 

The multi-period stochastic hydro problem can be decomposed in multiple steps where each step can be 
represented by the sum of: 
 

a) Actual cost: Corresponds to the thermal variable generation costs in that step. 

b) Future cost: Corresponds to the future thermal variable generation costs associated to the future 
steps. 

 
At each step, the corresponding actual costs decrease if more water is used but future costs increase so 
there is an optimal point where the release decision minimizes the sum of actual and future costs. 

 
Figure 9: Actual and future costs schematic representation 
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Each step is modelled as a linear programming (LP) problem and the iterative procedure has two passes: 
forward and backward. One cut for the future cost function at that particular step is created in each backward 
pass. 

 
Figure 10: Future cost function approximation 

 
The algorithm to build the approximations to the Future Cost Function is summarized in the following section. 
 

SDDP Algorithm 

Forward pass 
 
Define a set of inflow scenarios ܫ௧ = ሼܫ௧

ଵ, … , ௧ܫ
௠, … , ௧ܫ

ெሽ for all stages t = 1, …, T 
For each inflow scenario ܫ௧ = ௧ܫ

ଵ, … , ௧ܫ
௠, … , ௧ܫ

ெ 
 Initialize storage value for stage 1 as ݒ௧

௠ =  ଵݒ
 For t=1, …, T 
  Solve the one-stage scheduling problem for initial storage ݒ௧

௠ and inflow ܫ௧
௠: 

 min c୲(u୲
୫) + α୲ାଵ (7) 

  Subject to  
௧ାଵݒ    

௠ = ௧ݒ
௠ − ௧ݑ

௠ − ௧ݏ + ௧ܫ
௠ 

௧ାଵݒ    
௠ ≤  ௠௔௫ݒ

௧ݑ
௠ ≤   ௠௔௫ݑ

௧ାଵߙ        ≥ ߮௧ାଵ
௡ ௧ାଵݒ + ௧ାଵߜ

௡      ݊ = 1, … , ܰ 
 Next 
Next 

Backward pass 
 
Set number of linear segments N=number of initial storage values M. 
 
Initialize future cost function for the last stage as zero: ሼ்߮ାଵ

௡ ାଵ்ߜ ݀݊ܽ
௡ ሽ for n=1, …, N 

 
For t = T, T-1, …, 1 
 For each storage value ݒ௧ = ሼݒ௧

௠, ݉ = 1, … ,  ሽܯ
  For each inflow scenario ܫ௧ = ௧ܫ

ଵ, … , ௧ܫ
௞, … , ௧ܫ

௄ 
   Solve the one-stage scheduling problem for initial storage ݒ௧

௠and inflow ܫ௧
௞. 

 α୲
୩(v୲

୫) = Min C୲(G୲) + α୲ାଵ (8) 
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     Subject to 
௧ାଵݒ       = ௧ݒ

௠ − ௧ݑ − ௧ݏ + ௧ܫ
௞  → ௧ߨ

௞ 
௧ାଵݒ       ≤  ௠௔௫ݒ
௧ݑ       ≤ ௠௔௫ݑ  
௧ାଵߙ                ≥ ߮௧ାଵ

௡ ௧ାଵݒ + ௧ାଵߜ
௡      ݊ = 1, … , ܰ 

  Next 
 
Calculate the coefficient and constant term for the mth linear segment of the future cost function in the 
previous stage: 
 
 ߮௧

௠ = ∑ ௛௧ߨ×௞݌
௞௄

௞ୀଵ  and ߜ௧
௠ = ∑ ௧ߙ×௞݌

௞(ݒ௧
௠) − ߮௧

௠×ݒ௧
௠௄

௞ୀଵ  
Next 

Next 
 
Where: 

 m: set of plants immediately upstream 
 ௧: turbined outflow volume during stage tݑ
 ௧: spilled outflow during stage tݏ

 
Lower bound calculation 
 
The lower bound is calculated as: 

 Z୪୭୵ୣ୰ = αଵvଵ (9) 

Upper bound calculation  
 
The upper bound is calculated as the sum of all immediate costs along the study period. 

௠ݖ = ෍ ܿ௧(ݑ௧
௠)

்

௧ୀଵ

 

Optimality Check 
 
Optimality check is achieved when the lower bound (See equation (9)) is inside the following confidence 
interval. 
Equation 10 shows the expected operation cost which is estimated as the mean total cost over all simulation 
scenarios. 

 
zො =

1
M

෍ z୫

୘

୲ୀଵ

 
(10) 

 
Equation 11 is generally used for a 95% confidence interval. 
 

 zത ∈ ሾzො − 1.96σෝ; zො + 1.96σෝሿ (11) 
 
Where ߪො is obtained by Equation 12 which is the standard deviation of the estimator. 
 

 
σෝ = ൥

1
M − 1

෍(z୫ − zത)ଶ

୘

୲ୀଵ

൩

ଵ/ଶ

 
(12) 
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New iteration 
 
If the lower bound is outside the confidence interval, the backward recursion is executed again with an 
additional set of storage values. The natural candidates for the new values are the volumes ሼݒ௧

௠ = 1, … ,  ሽܯ
produced in 0. 
 

Solving the full multi-stage stochastic graphically tree using SDDP 

The SDDP algorithm can be explained graphically using the following multi-stage tree: 

 
Figure 11: Full multi-stage tree to be solved using SDDP algorithm 

 

Blue paths are the forward simulation paths and light blue are the paths representing uncertainty, these light 
blue paths are used in the backward pass. 
 
Forward Pass 
 
The forward pass can be summarized in the following figures, where the problem is decomposed in steps 
with a duration coincident with stage duration and the link between stages is represented using a Future 
Cost Function (FCF). 
 
The first step mathematical problem can be represented using the following diagram: 
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Figure 12: First step SDDP forward simulation, sub problem 1  

The second step mathematical problems can be represented using the following diagrams: 
 

 
Figure 13: Second step SDDP forward simulation, sub problem 2 
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Figure 14: Second step SDDP forward simulation, sub problem 3 

 
Figure 15: Second step SDDP forward simulation, sub problem 4 
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Figure 16: Second step SDDP forward simulation, sub problem 5 

The sub-problems are independent and sub problems in same step can be run in parallel. 
 
The third step is similar. 

Backward Pass 
 
The backward pass at each stage can be summarized in the following figures, where the yellow branches are 
the independent problems solved at each stage. Each backward stage produces a new cut to calculate the 
FCF. 
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Figure 17: SDDP backward pass and FCF approximation at t=T-1 

 
Figure 18: SDDP backward pass and FCF approximation at t=1 
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Figure 19: SDDP backward pass at t=0 

 
It can be observed that all nodes of the forward and backward pass are solved independently. 
 
Simplified tree solved using SDDP 
SDDP algorithm can be formulated to solve the full multi-stage stochastic tree but it has the same 
dimensionality issue described in Figure 8, where the number of sub-problems are equal to:  
 .ே௨௠௕௘௥ௌ௧௔௚௘௦ݏ݁ݒܽ݁ܮ
 
The simplified SDDP tree reduces the size of the problem and then become mathematically solvable. This 
reduced tree has the following number of subproblems: ݏ݁݃ܽݐܵݎܾ݁݉ݑܰ× ݏ݁ݒܽ݁ܮ. The following figure 
summarizes this simplified tree where red paths are the paths explored during forward simulation and grey 
branches represent uncertainty at each stage. 
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Figure 20: Full tree vs SDDP tree 

 
5.3 Hanging branches 

This method was researched and developed at Energy Exemplar’s Adelaide office during 2013 -2015. The 
problem is formulated using recursive scenario-wise decomposition formulation and the SDDP stochastic 
tree. 
 
The full tree can be classified in full branches, hanging branches and death branches as showed below: 
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Figure 21: Full multi-stage tree illustrating full, hanging and death branches 

 
The resulting tree to be formulated in an optimization problem is: 
 

 
Figure 22: Reduced multi-stage tree illustrating the equivalent tree. 

 
As in SDDP, this method formulates a full recursive multi-stage stochastic problem. 
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This method in PLEXOS is defined using the Global class of objects as showed in figure below: 

 
Figure 23: Hanging branches implementation in PLEXOS for 2 years horizon, 5 hanging branches and 1 full branch per stage and stages 
placed at the end of each week. 
 
To help to improve the speed, the hanging branches were designed to have one block per stage from the 
stage that follows the stage they were created. This is like the equivalent SDDP reduced tree showed in Figure 
20.  
 

 
Figure 24: First stage of hanging branches have a block duration equal the blocks specified and the further stages are reduced to 1 
block. This example is showing the reduction when the user specifies 5 blocks LDC. 
 

Hanging branch weights 

When the hanging branches equivalent multi-stage tree is formulated, it exists a solver limitation to solve 
the problem in one single step.  
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For example, if the user would like to solve this problem: 120 stages, 40 hanging branches per stage and 40 
full branches for 10 years using 5 blocks LDC per month. This means the following: 
 

 The first 41 branches (40 hanging + 1 full branch) has 1/41 probability occurrence. 

 The second stage has 41 branches (40 hanging + 1 full branch) so each one has 1/41 probability of 
occurrence. So, from the first stage the probability for each second stage branch is 1/41*1/41. 

 For next stages is the same 

Then solving the problem from the first stage until the last one produces tiny weights for future branches, 
this is illustrated in the table below for the example described above: 
 

Table 1: Brach Weight per stage solving the problem from root node 
Stage 
Number Probability Probability 

1 1/41 0.024390244 

2 (1/41)^2 0.000594884 

3 (1/41)^3 1.45094E-05 

4 (1/41)^4 3.53887E-07 

5 (1/41)^5 8.63139E-09 

6 (1/41)^6 2.10522E-10 

7 (1/41)^7 5.13468E-12 

8 (1/41)^8 1.25236E-13 

9 (1/41)^9 3.05454E-15 

10 (1/41)^10 7.45009E-17 

11 (1/41)^11 1.81709E-18 

12 (1/41)^12 4.43194E-20 

13 (1/41)^13 1.08096E-21 

14 (1/41)^14 2.63649E-23 

15 (1/41)^15 6.43046E-25 

16 (1/41)^16 1.56841E-26 

17 (1/41)^17 3.82538E-28 

18 (1/41)^18 9.33019E-30 

19 (1/41)^19 2.27566E-31 

… … … 

 
A safe range of objective coefficients guaranteed by a commercial solver is between 10^-6 and 10^6, that 
means it can only be ensured a multi-stage solution until stage three. 
 
The multi-stage stochastic optimization says that at each stage the decision maker can change his mind and 
take a new decision because additional information is revealed, so this limitation can be solved in the same 
way a multi-stage stochastic problem is solved in the real life: using a rolling horizon approach splitting the 
horizon in steps. The only information passed between steps is related to storage end/initial volumes.  
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Hanging branches with rolling horizon  

The Rolling Horizon approach is designed to overcome the limitation of vanishingly small probabilities deep 
into the future. The method looks ahead until certain point in the future and the end volumes in that point 
are passed as initial volumes at the start of the next step. 
 
For a horizon divided in four different steps, the algorithm works as follows: 
Step 1: 

a) Starting date is beginning of root node. 
b) Multi-stage tree formulated and up to some stage in the future (user decides when) no more 

branches to avoid weights issue. 
 
Step 2: 

a) Starting date is beginning of stage 1. 
b) End volumes in step 1 are passed as initial volumes in step 2. 
c) The past branches are not formulated because that part of the problem is already solved. 

 
Step 3: 

a) Starting date is beginning of stage 2. 
b) End volumes in step 2 are passed as initial volumes in step 3. 
c) The past branches are not formulated because that part of the problem is already solved. 
d) More hanging branches are formulated when the weights provide information to the optimization 

solver. 
 
Step 4: 

a) Starting date is beginning of stage 3. 
b) End volumes in step 3 are passed as initial volumes in step 4. 
c) The past branches are not formulated because that part of the problem is already solved. 
d) The problem becomes a simple deterministic problem since no more uncertainty is added because it 

is a recursive multi-stage problem. 
 
Figure 25 shows the hanging branches method for a multi-stage problem consisting of 4 stages, 2 hanging 
branches per stage and 1 full branch where the horizon is divided in 4 different steps.  
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Figure 25: Rolling horizon for hanging branches 

 

5.4 Comparison of different stochastic programming algorithms 

 
Table 2 summarizes the difference between the three methods studied: scenario tree reduction, SDDP and 
Hanging Branches approach to solve stochastic multi-stage problems. 
 

Table 2. Differences in multi-stage formulations. 
 Scenario reduction SDDP Hanging Branches 

Documented in literature? Yes Yes No. Method was 
developed at Energy 
Exemplar 

Recursive vs Non Recursive* Non Recursive Recursive Recursive 
Multi-stage tree exploration No resampling Some SDDP versions resample 

the tree allowing multiple 
exploration paths 

No resampling 

Speed solution An equivalent SDDP tree is 
impossible to solve using 
today’s available computers 

It uses decomposition 
techniques and parallel 
resolution of independent sub 
problems to improve 
simulation performance. 

It should equivalent to 
SDDP but faster than 
scenario reduction. 

Linear or Integer? Linear or MIP Linear Only Linear MIP 
Implemented in PLEXOS? Yes No Yes 
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6 Case Study 
The following is a case study showing the resolution of the problem using SDDP and hanging branches 
method. 
 
6.1 Data of the system 

The following model has 1 hydro generator with storage, 1 thermal generator and 1 node. Each unit has a 
max capacity equal to 100 MW.  
 
The operational costs (C) are 1 $/MWh for the thermal generator and 0 $/MWh for the hydro generator. The 
unserved energy cost (USE) is 10 $/MWh. 
 
Table 3 summarizes generators data. 

Table 3: Generator technical data 
Generator Name Node MSL (MW) Max Capacity (MW) 
Thermal Gth Gens 0 100 
Hydro Gh Gens 0 100 

 
Table 4 summarizes generator cost parameters. 
 

Table 4: Generator costs parameters 
Name C ($/MWh) 

Cth 1 
Ch 0 

CUSE 10 
 
The horizon is segmented into 3 blocks. The first two blocks have 1 week duration and the third block has 
two weeks duration. The loads (D) are 90, 160 and 110 MW for blocks 1, 2 and 3 respectively. 
 
The initial volume (ݒ଴) of the storage is 60.48 Mm3 and its max capacity is 100 Mm3. The storage has recycle 
end effects with a penalty cost equal to 1.5 times unserved energy cost (1.5 USE). The hydro generator has 1 
MW/m3/s efficiency. The inflow is 50 m3/s for the first block; then there are 3 inflow possibilities for the 
second stage: 10, 50 or 90 m3/s and the same 3 inflow possibilities for the last stage.  
 
Table 5 and Table 6 summarize the additional input information. 
 

Table 5: Storage properties 
Min Vol (Mm3) Max Vol (Mm3) ρ (MW/m3/s) 

60.48 100 1 
 

Table 6: General Information per block 
Stages (t) 1 2 3 

Duration (h) 168 168 336 
Load (MW) 90 160 110 

Inflow (m3/s) 50 
10 40 
50 50 
90 60 
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Figure 26. Representation of the Power System 

 
The optimization problem determines the optimal dispatch of the system that minimizes production costs 
given inflows uncertainty. Each decision is re-evaluated at the beginning of each block when new inflow 
forecast arrives to the decision maker. 
 
The problem is a stochastic multi-stage optimization problem that can be represented in mathematical terms 
as shown in equation (13) where each block represents a stage: 
 

 
ܼ = ݉݅݊ ቎෍ ෍ ௧,௞݌ ∙ ݐ∆

௄(௧)

௞ୀଵ

∙ ൫ݐ_ܥℎ ∙ ℎ௧,௞ݐ_ܩ + ܧܷܵ_ܥ ∙ ௧,௞൯ܧܷܵ

ு

௧ୀଵ

቏ 
(13) 

    
Subject to: 

ℎ௧,௞_ܩ + ℎ௧,௞ݐ_ܩ + ௧,௞ܧܷܵ =  ௧ܦ
ℎ௧,௞_ܩ = ߩ ∙  ௧,௞ݍ

௧,௞ݒ = ௧ିଵ,௞ݒ + ܫ − ܴ 

൦

ℎ௠௜௡ݐ_ܩ
ℎ௠௜௡_ܩ

0
௠௜௡ݒ

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ
ℎ௧,௞ݐ_ܩ

ℎ௧,௞_ܩ

௧,௞ܧܷܵ
௧,௞ݒ ے

ۑ
ۑ
ې

≤ ൦

ℎ௠௔௫ݐ_ܩ
ℎ௠௔௫_ܩ

௧ܦ
௠௔௫ݒ

൪ 

Where: 
∑ ௧,௞: Probability of sub-problem k occurring in stage t. Note that݌ ௞݌ = 1௄

௞ୀଵ  
 Duration of the stage :ݐ∆
  ℎ: Cost of thermal generator per MWhݐ_ܥ
  cost of unserved energy per MWh :ܧܷܵ_ܥ
 ℎ௧,௞: Thermal generation of sub-problem k at stage tݐ_ܩ
 ℎ௧,௞: Hydro generation of sub-problem k at stage t_ܩ
 ௧,௞: Unserved energy of sub-problem k at stage tܧܷܵ
 ௧,௞: Stored end volume of sub-problem k at stage tݒ
 ௧ିଵ,௞: Stored end volume of sub-problem k at stage t-1ݒ
 ௧: Load in stage tܦ
I: Inflow (ܫ = ݑ ∙  (௧,௞ܣ
R: Release (ܴ = ݑ ∙  (௧,௞ݍ
 Hydro factor, refer to equation (14) :ݑ
 ௧,௞: Inflow (m3/s) of sub-problem k at stage tܣ
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Equation (14) shows the value for factor “u” to convert hydro inflows into cubic meters.  
 

ݑ  = (ݐ∆)ݑ = 3600 ቂ
ݏ
ℎ

ቃ ∙ ሾℎሿݐ∆ = 0.0036ሾݏܯሿ (14) 

 
Because the stages have different durations then equation (14) takes the following values: 

= ଵ,ଶݑ (168)ݑ = 0.6048 
ଷݑ = (336)ݑ = 1.2096 

 
By using the equations above, an inflow equal to 50 m3/s stores 30.24 Mm3 of water in the first and second 
stages, and 60.48 Mm3 in the last stage.  
 
1 MWh deviation in the end effect recycle condition is equal to the following cost per Mm3: 

 
ቈ

$
ଷ቉݉ܯ = ቈ

$
ℎܹܯ

቉ ∙ ߩ ൤
ܹܯ

݉ଷ ⁄ݏ
൨ ∙

10଺

3600ሾݏ ℎ⁄ ሿ
 

(15) 

 
= 1.5 ∙ 10 ∙ 1 ∙ 277.78 [$/Mm3] 

=1.5 ∙ 2777.78 [$/Mm3] 
 
This value can be used to create a Future Cost Function (FCF) at the end of the planning horizon. The 
constraint is built using equation (16).  

 ∝௧,௞≥ ௧,௞ߙ
∗ + ௧,௞ߨ

∗ ௧,௞ݒ) − ௧ିଵ,௞ݒ
∗ ) (16) 

 
Equation (16) takes the following values 

ଷ,௞ߙ ≥ 0 − 1.5 ∙ 2777.78 ∙ ൫ݒଷ,௞ − 60.48൯ = 4166.67 ∙ ൫60.48 −  ଷ,௞൯ݒ
 
Equation (13) can be rewritten in the following extensive form  

ܼ = min ൥ݐ_ܩℎଵ,ଵ + 10 ∙ ଵ,ଵܧܷܵ +
1
3

෍ൣݐ_ܩℎଶ,௞ + 10 ∙ ଶ,௞൧ܧܷܵ +
1
9

෍ൣݐ_ܩℎଷ,௞ + 10 ∙ ଷ,௞൧ܧܷܵ

ଽ

௞ୀଵ

ଷ

௞ୀଵ

൩ 

ℎଵ,ଵ_ܩ + ℎଵ,ଵݐ_ܩ + ଵ,ଵܧܷܵ = 90 
ℎଶ,ଵ_ܩ + ℎଶ,ଵݐ_ܩ + ଶ,ଵܧܷܵ = 160 
ℎଶ,ଶ_ܩ + ℎଶ,ଶݐ_ܩ + ଶ,ଶܧܷܵ = 160 
ℎଶ,ଷ_ܩ + ℎଶ,ଷݐ_ܩ + ଶ,ଷܧܷܵ = 160 
ℎଷ,ଵ_ܩ + ℎଷ,ଵݐ_ܩ + ଷ,ଵܧܷܵ = 110 
ℎଷ,ଶ_ܩ + ℎଷ,ଶݐ_ܩ + ଷ,ଶܧܷܵ = 110 
ℎଷ,ଷ_ܩ + ℎଷ,ଷݐ_ܩ + ଷ,ଷܧܷܵ = 110 
ℎଷ,ସ_ܩ + ℎଷ,ସݐ_ܩ + ଷ,ସܧܷܵ = 110 
ℎଷ,ହ_ܩ + ℎଷ,ହݐ_ܩ + ଷ,ହܧܷܵ = 110 
ℎଷ,଺_ܩ + ℎଷ,଺ݐ_ܩ + ଷ,଺ܧܷܵ = 110 
ℎଷ,଻_ܩ + ℎଷ,଻ݐ_ܩ + ଷ,଻ܧܷܵ = 110 
଼,ℎଷ_ܩ + ଼,ℎଷݐ_ܩ + ଼,ଷܧܷܵ = 110 
ℎଷ,ଽ_ܩ + ℎଷ,ଽݐ_ܩ + ଷ,ଽܧܷܵ = 110 

ଵ,ଵݒ = ଴ݒ + 30.24 − 0.6048 ∙  ℎଵ,ଵ_ܩ
ଶ,ଵݒ = ଵ,ଵݒ + 6.048 − 0.6048 ∙  ℎଶ,ଵ_ܩ
ଶ,ଶݒ = ଵ,ଵݒ + 30.24 − 0.6048 ∙  ℎଶ,ଶ_ܩ

ଶ,ଷݒ = ଵ,ଵݒ + 54.432 − 0.6048 ∙  ℎଶ,ଷ_ܩ
ଷ,ଵݒ = ଶ,ଵݒ + 48.384 − 1.2096 ∙  ℎଷ,ଵ_ܩ
ଷ,ଶݒ = ଶ,ଵݒ + 60.48 − 1.2096 ∙  ℎଷ,ଶ_ܩ

ଷ,ଷݒ = ଶ,ଵݒ + 72.576 − 1.2096 ∙  ℎଷ,ଷ_ܩ
ଷ,ସݒ = ଶ,ଶݒ + 48.384 − 1.2096 ∙  ℎଷ,ସ_ܩ



 
 
 
 
 

Page 32 of 53 CONFIDENTIAL – STRICTLY FOR ENERGY EXEMPLAR CLIENTS ONLY  

ଷ,ହݒ = ଶ,ଶݒ + 60.48 − 1.2096 ∙  ℎଷ,ହ_ܩ
ଷ,଺ݒ = ଶ,ଶݒ + 72.576 − 1.2096 ∙  ℎଷ,଺_ܩ
ଷ,଻ݒ = ଶ,ଷݒ + 48.384 − 1.2096 ∙  ℎଷ,଻_ܩ
଼,ଷݒ = ଶ,ଷݒ + 60.48 − 1.2096 ∙  ଼,ℎଷ_ܩ

ଷ,ଽݒ = ଶ,ଷݒ + 72.576 − 1.2096 ∙  ℎଷ,ଽ_ܩ

ۏ
ێ
ێ
ێ
ێ
ۍ
0
0
0
0
0
ے0

ۑ
ۑ
ۑ
ۑ
ې

≤ ݔ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ℎ௧,௞ݐ_ܩ

ℎ௧,௞_ܩ

ଵ,௞ܧܷܵ

ଶ,௞ܧܷܵ

ଷ,௞ܧܷܵ
௧,௞ݒ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

≤

ۏ
ێ
ێ
ێ
ێ
ۍ
100
100
90

160
110
ے100

ۑ
ۑ
ۑ
ۑ
ې

 

 
(17) 
 

6.2 Model solution using SDDP algorithm. 

 
Figure 27 illustrates the decision tree of the stochastic problem. It shows the sub-problems (t,k) together 
with the inflow data (ܣ௧,௞).  

 
Figure 27. Decision Tree 

 
When this system is solved using SDDP algorithm, 4 sub-problems are solved in forward pass (1 on the first 
stage and 3 on the second one) and 12 sub-problems are solved in backward pass (9 on the last stage and 3 
on the second one). Equation (18) shows the sub-problem to be solved in each iteration. 
 

 ܼ௧,௞൫ݒ௧ିଵ,௞൯ = ݐ∆ൣ݊݅݉ ∙ ൫ݐ_ܥℎ ∙ ℎ௧,௞ݐ_ܩ + ܧܷܵ_ܥ ∙ ௧,௞൯ܧܷܵ +  ௧,௞൧ (18)ߙ
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ℎ௧,௞_ܩ + ℎ௧,௞ݐ_ܩ + ௧,௞ܧܷܵ ≥  ௧ܦ
ℎ௧,௞_ܩ = ߩ ∙  ௧,௞ݍ

௧,௞ݒ = ௧ିଵ,௞ݒ + ܫ − ܴ          → ௧ߨ
∗ 

௧,௞ߙ ≥ 0 

൦

ℎ௠௜௡_ܩ
ℎ௠௜௡ݐ_ܩ

0
௠௜௡ݒ

൪ ≤

ۏ
ێ
ێ
ۍ

ℎ௧,௞_ܩ

ℎ௧,௞ݐ_ܩ

௧,௞ܧܷܵ
௧,௞ݒ ے

ۑ
ۑ
ې

≤ ൦

ℎ௠௔௫_ܩ
ℎ௠௔௫ݐ_ܩ

௧ܧܷܵ
௠௔௫ݒ

൪ 

Where: 
α: variable representing the expected future cost value of the following stage sub-problem 
 

ITERATION 1 

Direction: Forward Pass 
 
Equation (18) takes the following form for the stage 1 on forward pass in iteration 1. 
 

ܼଵ(0) = ݉݅݊ሾݐ_ܩℎଵ + ଵܧ10ܷܵ +  ଵሿߙ
ℎଵݐ_ܩ + ℎଵ_ܩ + ଵܧܷܵ = 90 
ଵݒ = 90.72 − 0.6048 ∙  ℎଵ_ܩ

ଵߙ ≥ 0 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଵ_ܩ
ℎଵݐ_ܩ
ଵܧܷܵ

ଵݒ

൪ ≤ ൦

100
100
90

100

൪ 

 
Equation (18) takes the following forms for the stage 2 on forward pass in iteration 1. 

ܼଶ,ଵ൫ݒଵ,ଵ൯ = ℎଶ,ଵݐ_ܩൣ݊݅݉ + ଶ,ଵܧ10ܷܵ +  ଶ,ଵ൧ߙ
ℎଶ,ଵݐ_ܩ + ℎଶ,ଵ_ܩ + ଶ,ଵܧܷܵ = 160 

ଶ,ଵݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଵܣ − 0.6048 ∙  ℎଶ,ଵ_ܩ
ଶ,ଵߙ ≥ 0 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଵ_ܩ

ℎଶ,ଵݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଶ൫ݒଵ,ଵ൯ = ℎଶ,ଶݐ_ܩൣ݊݅݉ + ଶ,ଶܧ10ܷܵ +  ଶ,ଶ൧ߙ

ℎଶ,ଶݐ_ܩ + ℎଶ,ଶ_ܩ + ଶ,ଶܧܷܵ = 160 
ଶ,ଶݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଶܣ − 0.6048 ∙  ℎଶ,ଶ_ܩ

ଶ,ଶߙ ≥ 0 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଶ_ܩ

ℎଶ,ଶݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଷ൫ݒଵ,ଵ൯ = ℎଶ,ଷݐ_ܩൣ݊݅݉ + ଶ,ଷܧ10ܷܵ +  ଶ,ଷ൧ߙ

ℎଶ,ଷݐ_ܩ + ℎଶ,ଷ_ܩ + ଶ,ଷܧܷܵ = 160 
ଶ,ଷݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଷܣ − 0.6048 ∙  ℎଶ,ଷ_ܩ

ଶ,ଷߙ ≥ 0 
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൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଶ,ଷ_ܩ

ℎଶ,ଷݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
160
100

൪ 

 
 
Because in this first pass we do not have approximation for the Future Cost Function (FCF), the stored volume 
at the end of the stages is zero (See Figure 28). This means that all the inflows were used to generate 
electricity, and the remaining load was supplied using the thermal gen and perhaps incur in unserved energy. 
 

 
Figure 28. Iteration 1 Forward Pass. 

 
The results for each sub-problems are presented below. Table 7 summarizes the costs of each sub-problem. 

ଵ,ଵݔ = ,ℎଵ,ଵ_ܩൣ ,ℎଵ,ଵݐ_ܩ ,ଵ,ଵܧܷܵ  ଵ,ଵ൧ݒ
ଵ,ଵݔ = ሾ90, 0, 0, 36.29ሿ 

ܼଵ,ଵ(0) =  0 + 10 ∙ 0 = $0 
ଶ,ଵݔ = ,ℎଶ,ଵ_ܩൣ ,ℎଶ,ଵݐ_ܩ ,ଶ,ଵܧܷܵ  ଶ,ଵ൧ݒ

ଶ,ଵݔ = ሾ70, 90, 0, 0ሿ 
ܼଶ,ଵ(0) = 90 + 10 ∙ 0 = $90/ℎ×168ℎ = $15,120  

ଶ,ଶݔ = ,ℎଶ,ଶ_ܩൣ ,ℎଶ,ଶݐ_ܩ ,ଶ,ଶܧܷܵ  ଶ,ଶ൧ݒ
ଶ,ଶݔ = ሾ100, 60, 0, 6.05ሿ 

ܼଶ,ଶ(0) = 60 + 10 ∙ 10 = $60/ℎ×168ℎ = $10,080  
ଶ,ଷݔ = ,ℎଶ,ଷ_ܩൣ ,ℎଶ,ଷݐ_ܩ ,ଶ,ଷܧܷܵ  ଶ,ଷ൧ݒ

ଶ,ଷݔ = ሾ100, 60, 0, 30.24ሿ 
ܼଶ,ଷ(0) = 60 + 10 ∙ 0 = $60/ℎ×168ℎ = $10,080  
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Table 7: Results of Iteration 1 Forwards Pass. 
t K ࢚࢜,࢑

∗  AC FCF 
1 1 36.29 0 0 
2 1 0 15120 0 

2 6.048 10080 0 
3 30.24 10080 0 

 
As an example, the results of the sub-problem 1 of stage 2 means that the 10 m3/s are used to generate 70 
MW with the hydro gen and 90 MW with the thermal gen, so there is no unserved energy. Thus, the cost of 
the sub-problem is $100,800. 
 

Direction: Backward Pass 
Equation (18) takes the following form for the stage 3 on the backward pass of iteration 1. 

ܼଷ,ଵ൫ݒଶ,ଵ൯ = ℎଷ,ଵݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,ଵܧܷܵ +  ଷ,ଵ൧ߙ
ℎଷ,ଵݐ_ܩ + ℎଷ,ଵ_ܩ + ଷ,ଵܧܷܵ = 110 

ଷ,ଵݒ = ଶ,ଵݒ + ݑ  ∙ ଷ,ଵܣ − 1.2096 ∙  ℎଷ,ଵ_ܩ
ଷ,ଵߙ ≥ 0 

ଷ,ଵߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,ଵ൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,ଵ_ܩ

ℎଷ,ଵݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,ଶ൫ݒଶ,ଵ൯ = ℎଷ,ଶݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,ଶܧܷܵ +  ଷ,ଶ൧ߙ

ℎଷ,ଶݐ_ܩ + ℎଷ,ଶ_ܩ + ଷ,ଶܧܷܵ = 110 
ଷ,ଶݒ = ଶ,ଵݒ + ݑ  ∙ ଷ,ଶܣ − 1.2096 ∙  ℎଷ,ଶ_ܩ

ଷ,ଶߙ ≥ 0 
ଷ,ଶߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,ଶ൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,ଶ_ܩ

ℎଷ,ଶݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,ଷ൫ݒଶ,ଵ൯ = ℎଷ,ଷݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,ଷܧܷܵ +  ଷ,ଷ൧ߙ

ℎଷ,ଷݐ_ܩ + ℎଷ,ଷ_ܩ + ଷ,ଷܧܷܵ = 110 
ଷ,ଷݒ = ଶ,ଵݒ + ݑ  ∙ ଷ,ଷܣ − 1.2096 ∙  ℎଷ,ଷ_ܩ

ଷ,ଷߙ ≥ 0 
ଷ,ଷߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,ଷ൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,ଷ_ܩ

ℎଷ,ଷݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,ସ൫ݒଶ,ଶ൯ = ℎଷ,ସݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,ସܧܷܵ +  ଷ,ସ൧ߙ

ℎଷ,ସݐ_ܩ + ℎଷ,ସ_ܩ + ଷ,ସܧܷܵ = 110 
ଷ,ସݒ = ଶ,ଶݒ + ݑ  ∙ ଷ,ସܣ − 1.2096 ∙  ℎଷ,ସ_ܩ

ଷ,ସߙ ≥ 0 
ଷ,ସߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,ସ൯ݒ
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൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,ସ_ܩ

ℎଷ,ସݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,ହ൫ݒଶ,ଶ൯ = ℎଷ,ହݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,ହܧܷܵ +  ଷ,ହ൧ߙ

ℎଷ,ହݐ_ܩ + ℎଷ,ହ_ܩ + ଷ,ହܧܷܵ = 110 
ଷ,ହݒ = ଶ,ଶݒ + ݑ  ∙ ଷ,ହܣ − 1.2096 ∙  ℎଷ,ହ_ܩ

ଷ,଺ߙ ≥ 0 
ଷ,ହߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,ହ൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,ହ_ܩ

ℎଷ,ହݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,଺൫ݒଶ,ଶ൯ = ℎଷ,଺ݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,଺ܧܷܵ +  ଷ,଺൧ߙ

ℎଷ,଺ݐ_ܩ + ℎଷ,଺_ܩ + ଷ,଺ܧܷܵ = 110 
ଷ,଺ݒ = ଶ,ଶݒ + ݑ  ∙ ଷ,଺ܣ − 1.2096 ∙  ℎଷ,଺_ܩ

ଷ,଺ߙ ≥ 0 
ଷ,଺ߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,଺൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,଺_ܩ

ℎଷ,଺ݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,଻൫ݒଶ,ଷ൯ = ℎଷ,଻ݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,଻ܧܷܵ +  ଷ,଻൧ߙ

ℎଷ,଻ݐ_ܩ + ℎଷ,଻_ܩ + ଷ,଻ܧܷܵ = 110 
ଷ,଻ݒ = ଶ,ଷݒ + ݑ  ∙ ଷ,଻ܣ − 1.2096 ∙  ℎଷ,଻_ܩ

ଷ,଻ߙ ≥ 0 
ଷ,଻ߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,଻൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,଻_ܩ

ℎଷ,଻ݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,଼൫ݒଶ,ଷ൯ = ଼,ℎଷݐ_ܩൣ݊݅݉ + 10 ∙ ଼,ଷܧܷܵ +  ଷ,଼൧ߙ

଼,ℎଷݐ_ܩ + ଼,ℎଷ_ܩ + ଼,ଷܧܷܵ = 110 
଼,ଷݒ = ଶ,ଷݒ + ݑ  ∙ ଼,ଷܣ − 1.2096 ∙  ଼,ℎଷ_ܩ

଼,ଷߙ ≥ 0 
଼,ଷߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,଼൯ݒ

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

଼,ℎଷ_ܩ

଼,ℎଷݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
ܼଷ,ଽ൫ݒଶ,ଷ൯ = ℎଷ,ଽݐ_ܩൣ݊݅݉ + 10 ∙ ଷ,ଽܧܷܵ +  ଷ,ଽ൧ߙ

ℎଷ,ଽݐ_ܩ + ℎଷ,ଽ_ܩ + ଷ,ଽܧܷܵ = 110 
ଷ,ଽݒ = ଶ,ଷݒ + ݑ  ∙ ଷ,ଽܣ − 1.2096 ∙  ℎଷ,ଽ_ܩ

ଷ,ଽߙ ≥ 0 
ଷ,ଽߙ ≥ 4166.67 ∙ ൫60.48 −  ଷ,ଽ൯ݒ
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൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଷ,ଽ_ܩ

ℎଷ,ଽݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
110
100

൪ 

 
The FCF’s are calculated using the related sub-problems, as shown in Figure 29. Figure 29 also shows the 
resultant volumes in the last stage.  

 
Figure 29. Iteration 1 Backward Pass. 

 
The results for each sub-problem are as follows. Table 8 summarizes the costs of each sub-problem. 

ଷ,ଵݔ = ሾ0, 100, 10, 48.384ሿ 
ܼଷ,ଵ(0) = 100 + 10 ∙ 10 = $200/ℎ×336ℎ = $67,200  

ଷ,ଶݔ = ሾ0, 100, 10, 60.48ሿ 
ܼଷ,ଶ(0) = 100 + 10 ∙ 10 = $200/ℎ×336ℎ = $67,200  

ଷ,ଷݔ = ሾ10, 100, 0, 60.48ሿ 
ܼଷ,ଷ(0) = 100 + 10 ∙ 0 = $100/ℎ×336ℎ = $33,600  

ଷ,ସݔ = ሾ0, 100, 10, 54.432ሿ 
ܼଷ,ସ(0) = 100 + 10 ∙ 10 = $200/ℎ×336ℎ = $67,200  

ଷ,ହݔ = ሾ5, 100, 5, 60.48ሿ 
ܼଷ,ହ(0) = 100 + 5 ∙ 10 = $150/ℎ×336ℎ = $50,400  

ଷ,଺ݔ = ሾ15, 95, 0, 60.48ሿ 
ܼଷ,଺(0) = 95 + 10 ∙ 0 = $95/ℎ×336ℎ = $31,920  

ଷ,଻ݔ = ሾ15, 95, 0, 60.48ሿ 
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ܼଷ,଻(0) = 95 + 10 ∙ 0 = $95/ℎ×336ℎ = $31,920  
଼,ଷݔ = ሾ25, 85, 0, 60.48ሿ 

ܼଷ,଼(0) = 85 + 10 ∙ 0 = $85/ℎ×336ℎ = $28,560  
ଷ,ଽݔ = ሾ35, 75, 0, 60.48ሿ 

ܼଷ,ଽ(0) = 75 + 10 ∙ 0 = $75/ℎ×336ℎ = $25,200  
ଶ,ଵݔ = ሾ37.5, 100, 22.5, 19.66ሿ 

ܼଶ,ଵ(0) = 100 + 10 ∙ 22.5 = $325/ℎ×168ℎ = $54,600  
ଶ,ଶݔ = ሾ60, 100, 0, 30.24ሿ 

ܼଶ,ଶ(0) = 100 + 10 ∙ 0 = $100/ℎ×168ℎ = $16,800  
ଶ,ଷݔ = ሾ60, 100, 0, 54.432ሿ 

ܼଶ,ଷ(0) = 100 + 10 ∙ 0 = $100/ℎ×168ℎ = $16,800  
 

Table 8: Results of Iteration 1 Backward Pass 
t k AC FCF ࢚࣊,࢑ 

3 1 67200 50400 4166.667 
2 67200 0 4166.667 
3 33600 0 2777.778 
4 67200 25200 4166.667 
5 50400 0 2777.778 
6 31920 0 277.7778 
7 31920 0 277.7778 
8 28560 0 277.7778 
9 25200 0 277.7778 

2 1 54600 0 2777.778 
2 16800 0 2407.407 
3 16800 21840 277.7778 

 
From the estimations of the third and second stage it is possible to calculate new approximations of FCF or 
Benders Cuts for the second and first stage, respectively.  
 
First, it is necessary to weight the expected values of the dual variable (π) and the expected values of the 
optimal solution (α) according to the probability of occurrence of the sub-problem, as shown in equation (19) 
and equation (20).  

 

௧,௞ߙ
∗ = ෍ ௧ାଵ,௞ܥܣ௞൫݌ + ௧ାଵ,௞൯ܨܥܨ

௄(௧)

௞ୀଵ

 

(19) 

 
 

௧,௞ߨ
∗ = ෍ ௧ାଵ,௞ߨ௞݌

௄(௧)

௞ୀଵ

 

(20) 

 
 
Since the volumes obtained for each second stage sub-problem are different, then three different cuts are 
calculated for the second stage, using the corresponding sub-problem of stage three. Equation (19) takes the 
following values 

ଶ,ଵߙ
∗ = ൬

1
3

൰ ∙ (2 ∙ 67,200 + 33,600 + 50,400) = 72,800 

ଶ,ଶߙ
∗ = ൬

1
3

൰ ∙ (67,200 + 50,400 + 31,920 + 25,200) = 58,240 
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ଶ,ଷߙ
∗ = ൬

1
3

൰ ∙ (31,920 + 28,560 + 25,200) = 28,560 

 

ଵߙ
∗ = ൬

1
3

൰ ∙ (54,600 + 2 ∙ 16,800 + 21,840) = 36,680 

 
Equation (20) takes the following values 

ଶ,ଵߨ
∗ = ൬

1
3

൰ ∙ (2 ∙ 4,166.67 + 2777.78) = 3,703.70 

ଶ,ଶߨ
∗ = ൬

1
3

൰ ∙ (4,166.67 + 2777.78 +  277.78) = 2,407.41 

ଶ,ଷߨ
∗ = ൬

1
3

൰ ∙ (3 ∙ 277.78) = 277.78 

ଵߨ
∗ = ൬

1
3

൰ ∙ (2777.78 + 2407.41 + 277.78) = 1,820.99 

 
The expected value of the dual variable and the expected value of the optimal solution together with 
equation (16) are used to build Benders Cut to add to the master problem.     

ଶ,ଵߙ  ≥ 72800 − 3703.70 ∙ ൫ݒଶ,ଵ − 0൯ 
ଶ,ଶߙ ≥ 58240 − 2407.41 ∙ ൫ݒଶ,ଶ − 6.05൯ 
ଶ,ଷߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଷ − 30.24൯ 

(21) 

ଵߙ  ≥ 36680 − 1820.99 ∙ ଵݒ) − 36.29) (22) 
 
Equation (21) shows the constraints that must be included in the sub-problems of the second stage. Similarly, 
equation (22) shows the constraint that must be included in the sub-problems of the first stage in the second 
iteration. 
 
From Table 8 it can be observed that in stage 3, the natural inflows for sub -problems 1 and 4 (k3= 1, 4) are 
not enough to meet recycle end volume conditions, so these sub problems are penalized with future costs. 
For these subproblems it can be observed that the thermal generators are generating at maximum capacity, 
the hydro gen is not generating and there are 10 MW of unserved energy. Therefore, the cost of these sub 
problems has two components, one based in the actual costs AC ($200) and the FCF estimation ($150). Both 
have to be multiplied for the stage duration, resulting in a total cost of $117,6000 ($67,200 + $50,400). 
 

Convergence 
 
The convergence is calculated in equation (25) using equation (23) for the Upper Bound, and equation (24) 
for the Lower Bound 

 
ܼ௨௣௣௘௥ =

1
ܭ

෍ ௞ܥܣ

௄

௞ୀଵ

 
(23) 

 
 ܼ௟௢௪௘௥ = ଵܥܣ  +  ଵ (24)ܨܥܨ

 
 

ߝ =
ܼ௨௣௣௘௥ − ܼ௟௢௪௘௥

ܼ௨௣௣௘௥
∙ 100 < ̂ߝ = 1% 

(25) 

 
 
Above equations take the following values: 
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ܼ௨௣௣௘௥ = 0 +
(15120 + 2 ∙ 10080)

3
+

(3 ∙ 67200 + 33600 + 50400 + 2 ∙ 31920 + 28560 + 25200)

9
= 56,560 

 
ܼ௟௢௪௘௥ = 0 + 0 = 0 

 

ߝ =
104,760 − 0

104,760
∙ 100 = 100% > 1% 

  

ITERATION 2 

Direction: Forward Pass 
 
Equations (21) and (22) are added to the sub-problems of iteration 2 on the forward pass. 
For stage 1: 

ܼଵ(0) = ݉݅݊ሾݐ_ܩℎଵ + ଵܧ10ܷܵ +  ଵሿߙ
ℎଵݐ_ܩ + ℎଵ_ܩ + ଵܧܷܵ = 90 
ଵݒ = 90.72 − 0.6048 ∙  ℎଵ_ܩ

ଵߙ ≥ 0 
ଵߙ ≥ 36680 − 1820.99 ∙ ଵݒ) − 36.29) 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଵ_ܩ
ℎଵݐ_ܩ
ଵܧܷܵ

ଵݒ

൪ ≤ ൦

100
100
90

100

൪ 

For stage 2: 
ܼଶ,ଵ(ݒ௧ିଵ

∗ ) = ℎଶ,ଵݐ_ܩൣ݊݅݉ + ଶ,ଵܧ10ܷܵ +  ଶ,ଵ൧ߙ
ℎଶ,ଵݐ_ܩ + ℎଶ,ଵ_ܩ + ଶ,ଵܧܷܵ = 160 

ଶ,ଵݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଵܣ − 0.6048 ∙  ℎଶ,ଵ_ܩ
ଶ,ଵߙ ≥ 0 

ଶ,ଵߙ ≥ 72800 − 3703.70 ∙ ൫ݒଶ,ଵ − 0൯ 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଵ_ܩ

ℎଶ,ଵݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଶ(ݒ௧ିଵ

∗ ) = ℎଶ,ଶݐ_ܩൣ݊݅݉ + ଶ,ଶܧ10ܷܵ +  ଶ,ଶ൧ߙ
ℎଶ,ଶݐ_ܩ + ℎଶ,ଶ_ܩ + ଶ,ଶܧܷܵ = 160 

ଶ,ଶݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଶܣ − 0.6048 ∙  ℎଶ,ଶ_ܩ
ଶ,ଶߙ ≥ 0 

ଶ,ଶߙ ≥ 58240 − 2407.41 ∙ ൫ݒଶ,ଶ − 6.05൯ 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଶ_ܩ

ℎଶ,ଶݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଷ(ݒ௧ିଵ

∗ ) = ℎଶ,ଷݐ_ܩൣ݊݅݉ + ଶ,ଷܧ10ܷܵ +  ଶ,ଷ൧ߙ
ℎଶ,ଷݐ_ܩ + ℎଶ,ଷ_ܩ + ଶ,ଷܧܷܵ = 160 

ଶ,ଷݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଷܣ − 0.6048 ∙  ℎଶ,ଷ_ܩ
ଶ,ଷߙ ≥ 0 

ଶ,ଷߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଷ − 30.24൯ 
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൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଶ,ଷ_ܩ

ℎଶ,ଷݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
160
100

൪ 

 
We have now an approximation for the FCF, the stored volume at the end of stages 1 and 2 have a value 
different from 0 (see Figure 30). 

 
Figure 30. Iteration 2 Forward Pass. 

 
Table 9 shows the results of iteration 2 in the forward pass direction.  
 

Table 9: Results of Iteration 2 Forwards Pass 
t k ࢚࢜

∗  AC FCF 
1 1 56.43 5595.25 0 
2 1 19.66 14984.75 0 
 2 30.24 11204.75 0 
 3 74.57 16800 16244.75 

 

Direction: Backward Pass 
Table 10 shows the results of iteration 2 in the backwards pass direction. This information can be used to 
generate new approximations. 

Table 10: Results of Iteration 2 Backward Pass. 
t k AC FCF ࢚࣊,࢑ 



 
 
 
 
 

Page 42 of 53 CONFIDENTIAL – STRICTLY FOR ENERGY EXEMPLAR CLIENTS ONLY  

3 1 46200 0 2777.78 
2 31500 0 277.78 
3 28140 0 277.78 
4 31920 0 277.78 
5 28560 0 277.78 
6 25200 0 277.78 
7 19605 0 277.78 
8 16245 0 277.78 
9 12885 0 277.78 

2 1 16800 28018.98 111.11 
2 10080 29684.75 277.78 
3 16800 16244.75 277.78 

 
Using the results in Table 10, three new cuts are calculated for the second stage (equation (26)) and one 
more for the first stage (equation (27)). 

ଶ,ଵߙ  ≥ 35280 − 111.11 ∙ ൫ݒଶ,ଵ − 19.66൯ 
ଶ,ଶߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଶ − 30.24൯ 

ଶ,ଷߙ ≥ 16244.75 − 277.78 ∙ ൫ݒଶ,ଷ − 74.57൯ 

(26) 

ଵߙ  ≥ 39209.49 − 555.56 ∙ ଵݒ) − 56.43) (27) 
 

Convergence 
The upper and lower bounds are higher than the desired gap as indicated below. 

ܼ௨௣௣௘௥ = 46620 
ܼ௟௢௪௘௥ = 5595.25 

ߝ = 88% > 1% 
 

ITERATION 3 

Direction: Forward Pass 
Equations (26) and (27) are added to the sub-problems of the forward pass of iteration 3. 
For stage 1: 

ܼଵ(0) = ݉݅݊ሾݐ_ܩℎଵ + ଵܧ10ܷܵ +  ଵሿߙ
ℎଵݐ_ܩ + ℎଵ_ܩ + ଵܧܷܵ = 90 
ଵݒ = 30.24 − 0.6048 ∙  ℎଵ_ܩ

ଵߙ ≥ 0 
ଵߙ ≥ 36680 − 1820.99 ∙ ଵݒ) − 36.29) 

ଵߙ ≥ 39209.49 − 555.56 ∙ ଵݒ) − 56.43) 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଵ_ܩ
ℎଵݐ_ܩ
ଵܧܷܵ

ଵݒ

൪ ≤ ൦

100
100
90

100

൪ 

For stage 2: 
ܼଶ,ଵ(ݒ௧ିଵ

∗ ) = ℎଶ,ଵݐ_ܩൣ݊݅݉ + ଶ,ଵܧ10ܷܵ +  ଶ,ଵ൧ߙ
ℎଶ,ଵݐ_ܩ + ℎଶ,ଵ_ܩ + ଶ,ଵܧܷܵ = 160 

ଶ,ଵݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଵܣ − 0.6048 ∙  ℎଶ,ଵ_ܩ
ଶ,ଵߙ ≥ 0 

ଶ,ଵߙ ≥ 72800 − 3703.70 ∙ ൫ݒଶ,ଵ − 0൯ 
ଶ,ଵߙ ≥ 35280 − 111.11 ∙ ൫ݒଶ,ଵ − 19.66൯ 
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൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଵ_ܩ

ℎଶ,ଵݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଶ(ݒ௧ିଵ

∗ ) = ℎଶ,ଶݐ_ܩൣ݊݅݉ + ଶ,ଶܧ10ܷܵ +  ଶ,ଶ൧ߙ
ℎଶ,ଶݐ_ܩ + ℎଶ,ଶ_ܩ + ଶ,ଶܧܷܵ = 160 

ଶ,ଶݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଶܣ − 0.6048 ∙  ℎଶ,ଶ_ܩ
ଶ,ଶߙ ≥ 0 

ଶ,ଶߙ ≥ 58240 − 2407.41 ∙ ൫ݒଶ,ଶ − 6.05൯ 
ଶ,ଶߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଶ − 30.24൯ 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଶ_ܩ

ℎଶ,ଶݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଷ(ݒ௧ିଵ

∗ ) = ℎଶ,ଷݐ_ܩൣ݊݅݉ + ଶ,ଷܧ10ܷܵ +  ଶ,ଷ൧ߙ
ℎଶ,ଷݐ_ܩ + ℎଶ,ଷ_ܩ + ଶ,ଷܧܷܵ = 160 

ଶ,ଷݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଷܣ − 0.6048 ∙  ℎଶ,ଷ_ܩ
ଶ,ଷߙ ≥ 0 

ଶ,ଷߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଷ − 30.24൯ 
ଶ,ଷߙ ≥ 16244.75 − 277.78 ∙ ൫ݒଶ,ଷ − 74.57൯ 

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଶ,ଷ_ܩ

ℎଶ,ଷݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
160
100

൪ 

 
It can be observed that at the end of first stage, water has a higher opportunity cost in the future stages, so 
at the end of the first stage the solution stores a higher volume of water, as shown in Table 11. 
 

Table 11: Results of Iteration 3 Forward Pass. 
t k ࢚࢜,࢑

∗  AC FCF 
1 1 90.72 15120 20160 
2 1 36.29 10080 57120 

2 60.48 10080 36960 
3 84.67 10080 36960 

 

Direction: Backward Pass 
Table 12 shows the results of iteration 3 in the backward pass direction.  
 

Table 12: Results of Iteration 3 Backward Pass. 
t k AC FCF ࢚࣊,࢑ 

3 1 30240 0 277.78 
2 26880 0 277.78 
3 23520 0 277.78 
4 23520 0 277.78 
5 20160 0 277.78 
6 16800 0 277.78 
7 16800 0 277.78 
8 13440 0 277.78 
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9 10080 0 277.78 
2 1 10080 36960 0 

2 10080 20160 277.78 
3 14337.78 9182.22 277.78 

 
There is information to calculate three more approximations for the second stage FCF (equation (28)) and 
one more for the first stage (equation (29)). 

ଶ,ଵߙ  ≥ 26880 − 277.78 ∙ ൫ݒଶ,ଵ − 36.29൯ 
ଶ,ଶߙ ≥ 20160 − 277.78 ∙ ൫ݒଶ,ଶ − 60.48൯ 
ଶ,ଷߙ ≥ 13440 − 277.78 ∙ ൫ݒଶ,ଷ − 84.67൯ 

(28) 

ଵߙ  ≥ 33600 − 185.18 ∙ ଵݒ) − 90.72) (29) 
 

Convergence 
The upper and lower bounds are higher than the desired gap as indicated below. 

ܼ௨௣௣௘௥ = 45360 
ܼ௟௢௪௘௥ = 35280 

ߝ = 22.22% > 1% 
 

ITERATION 4 

Direction: Forward Pass 
Equations (15) and (16) are added to the sub-problems of the forward pass of iteration 4. 
For stage 1: 

ܼଵ(0) = ݉݅݊ሾݐ_ܩℎଵ + ଵܧ10ܷܵ +  ଵሿߙ
ℎଵݐ_ܩ + ℎଵ_ܩ + ଵܧܷܵ = 90 
ଵݒ = 30.24 − 0.6048 ∙  ℎଵ_ܩ

ଵߙ ≥ 0 
ଵߙ ≥ 36680 − 1820.99 ∙ ଵݒ) − 36.29) 

ଵߙ ≥ 39209.49 − 555.56 ∙ ଵݒ) − 56.43) 
ଵߙ ≥ 33600 − 185.18 ∙ ଵݒ) − 90.72) 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଵ_ܩ
ℎଵݐ_ܩ
ଵܧܷܵ

ଵݒ

൪ ≤ ൦

100
100
90

100

൪ 

For stage 2: 
ܼଶ,ଵ(ݒ௧ିଵ

∗ ) = ℎଶ,ଵݐ_ܩൣ݊݅݉ + ଶ,ଵܧ10ܷܵ +  ଶ,ଵ൧ߙ
ℎଶ,ଵݐ_ܩ + ℎଶ,ଵ_ܩ + ଶ,ଵܧܷܵ = 160 

ଶ,ଵݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଵܣ − 0.6048 ∙  ℎଶ,ଵ_ܩ
ଶ,ଵߙ ≥ 0 

ଶ,ଵߙ ≥ 72800 − 3703.70 ∙ ൫ݒଶ,ଵ − 0൯ 
ଶ,ଵߙ ≥ 35280 − 111.11 ∙ ൫ݒଶ,ଵ − 19.66൯ 
ଶ,ଵߙ ≥ 26880 − 277.78 ∙ ൫ݒଶ,ଵ − 36.29൯ 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଵ_ܩ

ℎଶ,ଵݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଶ(ݒ௧ିଵ

∗ ) = ℎଶ,ଶݐ_ܩൣ݊݅݉ + ଶ,ଶܧ10ܷܵ +  ଶ,ଶ൧ߙ
ℎଶ,ଶݐ_ܩ + ℎଶ,ଶ_ܩ + ଶ,ଶܧܷܵ = 160 
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ଶ,ଶݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଶܣ − 0.6048 ∙  ℎଶ,ଶ_ܩ
ଶ,ଶߙ ≥ 0 

ଶ,ଶߙ ≥ 58240 − 2407.41 ∙ ൫ݒଶ,ଶ − 6.05൯ 
ଶ,ଶߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଶ − 30.24൯ 
ଶ,ଶߙ ≥ 20160 − 277.78 ∙ ൫ݒଶ,ଶ − 60.48൯ 

൦

0
0
0
0

൪ ≤ ݔ = ൦

ℎଶ,ଶ_ܩ

ℎଶ,ଶݐ_ܩ

ଶܧܷܵ
ଶݒ

൪ ≤ ൦

100
100
160
100

൪ 

 
ܼଶ,ଷ(ݒ௧ିଵ

∗ ) = ℎଶ,ଷݐ_ܩൣ݊݅݉ + ଶ,ଷܧ10ܷܵ +  ଶ,ଷ൧ߙ
ℎଶ,ଷݐ_ܩ + ℎଶ,ଷ_ܩ + ଶ,ଷܧܷܵ = 160 

ଶ,ଷݒ = ଵ,ଵݒ + ݑ  ∙ ଶ,ଷܣ − 0.6048 ∙  ℎଶ,ଷ_ܩ
ଶ,ଷߙ ≥ 0 

ଶ,ଷߙ ≥ 28560 − 277.78 ∙ ൫ݒଶ,ଷ − 30.24൯ 
ଶ,ଷߙ ≥ 16244.75 − 277.78 ∙ ൫ݒଶ,ଷ − 74.57൯ 

ଶ,ଷߙ ≥ 13440 − 277.78 ∙ ൫ݒଶ,ଷ − 84.67൯ 

൦

0
0
0
0

൪ ≤ ݔ =

ۏ
ێ
ێ
ۍ

ℎଶ,ଷ_ܩ

ℎଶ,ଷݐ_ܩ

ଷܧܷܵ
ଷݒ ے

ۑ
ۑ
ې

≤ ൦

100
100
160
100

൪ 

 
Table 13 shows the results of iteration 4 in the forward pass direction.  
 

Table 13: Results of iteration 4 Forwards Pass. 
t k ࢚࢜,࢑

∗  AC FCF 
1 1 54.43 5040 40320 
2 1 24.19 16800 30240 

2 24.19 10080 30240 
3 72.58 16800 16800 

 

Direction: Backward Pass 
Table 14 shows the results of iteration 4 in the backward pass direction.  
 

Table 14: Results of iteration 3 Backward Pass. 
t k AC FCF ࢚࣊,࢑ 

3 1 33600 0 277.78 
2 30240 0 277.78 
3 26880 0 277.78 
4 33600 0 277.78 
5 30240 0 277.78 
6 26880 0 277.78 
7 20160 0 277.78 
8 16800 0 277.78 
9 13440 0 277.78 

2 1 16800 30240 1111.11 
2 10080 30240 277.78 
3 16800 16800 277.78 
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Convergence 
The upper and lower bounds are identical as indicated below, so the process is concluded and this iteration 
results are the optimal. 

ܼ௨௣௣௘௥ = 45360 
ܼ௟௢௪௘௥ = 45360 

ߝ = 0 < 1% 
 
The expected cost of the problem is $45,360. Figure 31 show the optimal end volumes for each sub-problem. 
 

 
Figure 31. Optimum volumes per sub-problem. 
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6.3 Model solution using Hanging Branches 

The equivalent tree using hanging branches method is showed below: 

 
Figure 32: Multi-stage tree with full and hanging branches representation 

The problem formulated as hanging branches formulation is the scenario – wise decomposition + non 
anticipativity constraint version of equation 17. The formulation can be summarized as follows:  

ܼ = min ൥
1
9

෍ൣݐ_ܩℎଵ,௞ + 10 ∙ ଵ,௞ܧܷܵ + ℎଶ,௞ݐ_ܩ + 10 ∙ ଶ,௞ܧܷܵ + ℎଷ,௞ݐ_ܩ + 10 ∙ ଷ,௞൧ܧܷܵ

ଽ

௞ୀଵ

൩ 

ℎଵ,௞_ܩ + ℎଵ,௞ݐ_ܩ + ଵ,௞ܧܷܵ = 90 
ℎଶ,௞_ܩ + ℎଶ,௞ݐ_ܩ + ଶ,௞ܧܷܵ = 160 
ℎଷ,௞_ܩ + ℎଷ,௞ݐ_ܩ + ଷ,௞ܧܷܵ = 110 

ଵ,௞ݒ = ଴,௞ݒ + 30.24 − 0.6048 ∙ ݇∀ , ௛ଵ,௞ܩ = 1 … 9 
ଶ,௞ݒ = ଵ,௞ݒ + 6.048 − 0.6048 ∙ ݇∀ ,ℎଶ,௞_ܩ = 1 … 3 
ଶ,௞ݒ = ଵ,௞ݒ + 30.24 − 0.6048 ∙ ݇∀ ,ℎଶ,௞_ܩ = 4 … 6 

ଶ,௞ݒ = ଵ,௞ݒ + 54.432 − 0.6048 ∙ ݇∀ ,ℎଶ,௞_ܩ = 7 … 9 
ଷ,௞ݒ = ଶ,௞ݒ + 48.384 − 1.2096 ∙ ݇∀ ,ℎଶ,௞_ܩ = 1, 4, 7 
ଷ,௞ݒ = ଶ,௞ݒ + 60.48 − 1.2096 ∙ ݇∀ ,ℎଶ,௞_ܩ = 2, 5, 8 

ଷ,௞ݒ = ଶ,௞ݒ + 72.576 − 1.2096 ∙ ݇∀ ,ℎଶ,௞_ܩ = 3, 6, 9 
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ۏ
ێ
ێ
ێ
ێ
ۍ
0
0
0
0
0
ے0

ۑ
ۑ
ۑ
ۑ
ې

≤ ݔ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ℎ௧,௞ݐ_ܩ

ℎ௧,௞_ܩ

ଵ,௞ܧܷܵ

ଶ,௞ܧܷܵ

ଷ,௞ܧܷܵ
௧,௞ݒ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

≤

ۏ
ێ
ێ
ێ
ێ
ۍ
100
100
90

160
110
ے100

ۑ
ۑ
ۑ
ۑ
ې

 

ଵ,ଵݒ = ଵ,ଶݒ = ଵ,ଷݒ = ⋯ =  ଵ,ଽݒ
ଶ,ଵݒ = ଶ,ଶݒ =  ଶ,ଷݒ
ଶ,ସݒ = ଶ,ହݒ =  ଶ,଺ݒ
ଶ,଻ݒ = ଼,ଶݒ =  ଶ,ଽݒ

 

To represent the example in PLEXOS is needed the following objects: 

 2 generators 
 1 storage 
 1 region 
 1 variable 
 1 global 

 

 
Figure 33: Objects tree representing the example 

 

 
Figure 34: Variable profile to represent uncertainty in PLEXOS 

 
The global class has to be configured in the following way to have the tree modelled as in Figure 32. 
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Figure 35: Global class configuration 

 
Once the problem is solved in MT, the objective function is 45,360 which is the same objective function value 
found using SDDP method in section 6.2. 

 
Figure 36: Objective function value in log file 

 
 

7 Conclusions 
 

 The approach to solve hydro-thermal coordination optimization problems is to use stochastic 
optimization techniques to ensure the user minimizes the cost or alternatively maximizes the 
benefits of a hydro-thermal portfolio under uncertainty. A stochastic problem can be classified in: 

  
a) Two-stage or Multi-stages.  
b) Recursive or non-recursive. 

 
The current trend in the industry to solve a medium - long term stochastic hydro problems is 
formulating a multi-stage stochastic programming and recursive approach. 
 

 The formulation of a multi-stage stochastic problem has dimensionality issues even when a few 
number of stages are added so simplifications on the resultant tree have to be made to produce a 
problem solvable by today computers. 
 

 An equivalent SDDP tree is possible to formulate using scenario-wise decomposition and non-
anticipativity constraints. This problem is possible to solve using today’s computers. 
 

 Hanging Branches method in PLEXOS looks promising to replace SDDP. 
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9 Annexes 
9.1 Annex A: SDDP algorithm fundamentals 

SDDP algorithm deterministic approach 
 
Benders cuts take advantage of the following mathematical structure: 

ଵܥ݊݅ܯ ∙ ଵݔ + ଶܥ ∙  ଶݔ
Subject to 

ଵܣ ∙ ଵݔ ≥ ଵܾ 
ଵܧ ∙ ଵݔ + ଶܣ ∙ ଶݔ ≥ ܾଶ 

 
This can be interpreted as a two-stage sequential decisions process. In the first stage we decide on a trial 
feasible value for X1 and given the trial value we find the optimal solution of the second stage function: 

ߙ = ଶܥ݊݅ܯ ∙  ଶݔ
ଶܣ ∙ ଶݔ ≥ ܾଶ − ଵܧ ∙  ଵݔ

 
X1 is known value in the second stage problem, and goes to the right hand side of the constraints. The 
objective then is to minimize the sum of the first – stage and second stage cost functions: 

ଵܥ݊݅ܯ ∙ ଵݔ +  ߙ
Subject to 

ଵܣ ∙ ଵݔ ≥ ଵܾ 
 
Where C1X1 represents the “actual cost” and ߙ represents the “future cost” of decision X1. The future cost 
function translates the second stage costs as a function of the first stage decisions X1. If this function is 
available the problem can be solved as a one stage problem and then simplify the computation time. 
 
The future cost function is approximated by an analytical function rather than a set of discrete values using 
a piecewise linear function. The structure of the future cost function can be characterized by taking the dual 
of the second stage problem: 

ߙ = ߨ൫ݔܽܯ ∙ (ܾଶ − ଵܧ ∙  ଵ)൯ݔ
Subject to 

ߨ ∙ ଶܣ ≤  ଶܥ
 
 is the row vector of dual variables. From LP theory, optimal solution of dual and the original problem ߨ
coincide. Since X1 is in the objective function and not in the right hand side of the constraint set as in the 
original problem, the set of possible solutions can be characterized before knowing the decision X1. 
 
The problem can be solved by enumeration:  
 

)ߙ ଵܺ) = ଶܤ)௜ߨ൛ݔܽܯ − ଵܧ ଵܺ),  ൟ݅ ݈݈ܽ ݎ݋݂
 
This is equivalent to rewrite the problem as: 

 ߙ ݊݅ܯ
ߙ ≥ ଵ(ܾଶߨ − ଵܧ ∙  (ଵݔ

. 

. 

. 
ߙ ≥ ௩(ܾଶߨ − ଵܧ ∙  (ଵݔ

 
The problem can be rewritten as: 

ଵܥ݊݅ܯ ∙ ଵݔ +  ߙ
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Subject to 
ଵܣ ∙ ଵݔ ≥ ଵܾ 

ߙ ≥ ଵ(ܾଶߨ − ଵܧ ∙  (ଵݔ
. 
. 
. 

ߙ ≥ ௩(ܾଶߨ − ଵܧ ∙  (ଵݔ
 
 
We can rewrite the obtained cuts: 

ߙ ≥ ଵ(ܾଶߨ − ଵܧ ∙  (∗)(ଵݔ
  
If ݓ∗is optimal solution of: 

ߙ = ଶܿ)݊݅ܯ ∙  (ଶݔ
ଶܣ ∙ ଶݔ ≥ ܾଶ − ଵܧ ∙  ଵݔ

 
Assuming dual and primal has the same value we can write: 

∗ݓ = ଶܾ)∗ߨ − ଵܧ ∙ ଵݔ
∗) → ∗ߨ ∙ ܾଶ = ∗ݓ + ∗ߨ ∙ ଵܧ ∙ ଵݔ

∗ 
 
Substituting previous expression in cuts formulation (*), we can get an alternative expression for FCF: 

ߙ ≥ ∗ݓ + ∗ߨ ∙ ଵܧ ∙ ଵݔ)
∗ −  (ଵݔ

 
Hydro problems share same mathematical structure described above where the link between stages is the 
hydro balance equation: 
 

(2)݁݉ݑ݈݋ܸ݀݊ܧ = (1)݁݉ݑ݈݋ܸ݀݊ܧ + ݓ݋݈݂݊ܫ −  ݁ݏ݈ܴܽ݁݁
 
SDDP algorithm stochastic approach: 
 
Stochastic problems can be written as: 

ଵܥ݊݅ܯ ∙ ଵݔ + ଵܲ ∙ ଶܥ ∙ ܺଶଵ + ଶܲ ∙ ଶܥ ∙ ܺଶଶ + ⋯ + ௠ܲ ∙ ଶܥ ∙ ܺଶ௠ 
Subject to 

ଵܣ ∙ ଵݔ                                                                                     ≥ ଵܾ 
ଵܧ ∙ ଵݔ + ଶܣ ∙ ଶଵݔ                                                                     ≥ ܾଶଵ 
ଵܧ ∙ ଵݔ                              + ଶܣ ∙ ଶଶݔ                                         ≥ ܾଶଶ 

… 
ଵܧ ∙ ଵݔ                                                       + ଶܣ ∙ ଶ௠ݔ               ≥ ܾଶ௠  

 
Were p1 and p2 are the probabilities to obtain b1 and b2. The second stage problem can be written as follow: 

ݖ = min ଶଵݔଵܿଶ݌ +  ଶଶݔଶܿଶ݌
Subject to  

ଶଵݔଶܣ                                   ≥ ܾଶଵ − ଵݔଵܧ
∗ 

ଶଶݔଶܣ                                     ≥ ܾଶଵ − ଵݔଵܧ
∗ 

 
This problem can be decomposed into two independent problems: 

min ܿଶݔଶଵ 
Subject to  

ଶଵݔଶܣ ≥ ܾଶଵ − ଵݔଵܧ
∗ 

min ܿଶݔଶଶ 
Subject to 

ଶଶݔଶܣ ≥ ܾଶଶ − ଵݔଵܧ
∗ 

 
The original problem can be rewritten as: 
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ݖ = min ܿଵݔଵ +  (ଵݔ)തଵߙ
Subject to 

ଵݔଵܣ ≥ ଵܾ 
 
 
The function ߙത represents expected value of future cost function 

(ଵݔ)തଵߙ = (ଵݔ)ଵଵߙଵ݌ +  (ଵݔ)ଵଶߙଶ݌
(ଵݔ)ଵଵߙ = min ܿଶݔଶ 

Subject to 
ଶݔଶܣ ≥ ܾଶଵ − ଵݔଵܧ →  ଵߨ

(ଵݔ)ଵଶߙ = min ܿଶݔଶ 
Subject to 

ଶݔଶܣ ≥ ܾଶଶ − ଵݔଵܧ →  ଶߨ
 
The benders cuts associated to this problem are: 

ଵ(ܾଶଵߨଵ݌ − (ଵݔଵܧ + ଶ(ܾଶଶߨଶ݌ − (ଵݔଵܧ ≤  തߙ
 
That can be rewritten as: 

ଵݓଵ൫݌
∗ + ଵݔ)ଵܧଵߨ

∗ − ଵ)൯ݔ + ଶݓଶ൫݌
∗ + ଵݔ)ଵܧଶߨ

∗ − ଵ)൯ݔ ≤  തߙ
 
Grouping the above equation we obtain the cut expression for stochastic problems: 

ഥݓ ∗ + ଵݔ)ଵܧതߨ
∗ − (ଵݔ ≤  തߙ

ഥݓ ∗ = ଵݓଵ݌
∗ + ଶݓଶ݌

തߨ  ݁  ∗ = ଵߨଵ݌ +  ଶߨଶ݌


