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Executive Summary

In decision making under uncertainty, the decision maker has to make optimal decisions throughout a
horizon with incomplete information. Over the considered decision horizon, a number of stages are defined
and each stage represents a point in time where decisions are made or where uncertainty partially or totally
vanishes. According to the number of stages considered in the optimization problem we can distinguish
between two-stage and multi-stage stochastic problems. In a two-stage approach, the plan for the entire
multi-period planning horizon is determined before the uncertainty is realized, and only a limited number of
recourse actions can be taken afterwards. In contrast, a multi-stage approach allows revision of the planning
decisions as more information regarding the uncertainties is revealed across the planning horizon.

Regarding stochastic optimization applied to hydro-thermal coordination, the two-stage approach only finds
applications for short term operational planning. For medium and long-term studies, a multi-stage stochastic
approach is more suitable because, in practice, the system operator or hydro plant companies are monitoring
the state of the dam continuously and can take new decisions (stages) at any time given the actual and
historical inflow information.

The disadvantage of multi-stage stochastic optimization is that the simulation time increases exponentially
when more stages are added due to an increase in the dimensionality of the mathematical problem, and
even when a few number of stages are added it can result in a problem impossible to solve without using
reduction or decomposition techniques.

To help solve this dimensionality issue some algorithms have been proposed and this paper explores three
of them:

1) Scenario Reduction
2) Stochastic Dual Dynamic Programming (SDDP)
3) Hanging Branches

Scenario reduction techniques only finds applications for a few number of stages and a reduced uncertainty,
so it is not an option when the user wants to evaluate many stages and increased uncertainty.

SDDP (or DDP) is the method currently used in many countries where hydro-thermal coordination is
paramount. It allows the user to evaluate many stages and uncertainty.

The Hanging Branches method was researched and developed at Energy Exemplar Adelaide’s office during

2013 —2015. The idea behind this method is to formulate the equivalent reduced SDDP multi-stage tree using
scenario-wise decomposition techniques plus non-anticipativity constraints.
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The comparison table between these three methods is showed below.

Scenario reduction SDDP Hanging Branches
Documented in literature? Yes Yes No. Method was
developed at Energy
Exemplar
Recursive vs Non-recursive* | Non-recursive Recursive Recursive
Multi-stage tree exploration | No resampling Some SDDP versions resample No resampling

the tree allowing multiple
exploration paths

Speed solution An equivalent SDDP tree is It uses decomposition It should have
impossible to solve using techniques and parallel equivalent speed to
today’s available computers resolution of independent sub SDDP and much faster

problems to improve than scenario
simulation performance. reduction.

Linear or Integer? Linear or MIP Linear Only Linear or MIP

Implemented in PLEXOS? Yes No Yes.

*Recursive: at the beginning of each stage, the decision maker has a perfect insight on the inflow scenario that will be observed at that stage
*Non - Recursive: inflow scenarios are revealed after the release policy is taken

Hanging Branches method is the method that will ultimately replace SDDP. Initial benchmarks between both
methods, documented in this paper, using small multi-stage stochastic trees show that the objective function
values are identical. Following the tests shown here more development work was undertaken throughout
2016-17 and the method’s results benchmarked against full sized datasets confirming the accuracy of the
results.

Additional developments supporting the Hanging Branches method have been undertaken related to
automating the creation of the required hanging branches in the stochastic tree reading historical inflow
information. This was necessary because, for large stochastic trees, it is unpractical to create a csv file
manually with the required uncertainty. The developments undertaken were:

a) Historical apertures. Where the Hanging Branches are created randomly sampling the historical inflow
information at each stage.

b) PARMA time series. A more powerful option than a) since the hanging branches are be created from

past information so, for example, ‘wet’ observed scenarios are more probably to remain wet in the
future. This is achieved using a periodic ARMA time series (PARMA).
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1 Introduction

Power systems having both hydro-electric and thermal generation require a systematic and coordinated
approach to determine an optimal policy for dam operations. The goal of a hydro-thermal planning tool is to
minimize the expected thermal costs across the simulation period. These types of problems generally require
stochastic analysis to deal with inflow uncertainty. This can increase the mathematical size of the problem
and can easily become cumbersome to solve.

This whitepaper reviews three different algorithms of stochastic programming to solve this problem and how
these techniques can be applied to hydro-thermal scheduling problem and introduces the method developed
at Energy Exemplar. In addition, a case study solved using SDDP and the proposed method is done and a
comparison is provided.

2 The Challenge

The systematic coordination of a system composed of both hydro-electric and thermal plants requires
determining an operational strategy that for each period of the planning horizon produces a scheduling plan
of generation. This strategy minimizes the expected operational cost along the period, which is mainly
composed of fuel costs plus penalties for failure in load supply. The problem becomes complex to solve
because generally in hydro systems:

e Natural inflows are stochastic processes.

e Availability of water stored in dams is limited.

e There are complex cascading hydro systems.

e Existing water usage policies and environmental releases such as irrigation settlements.

Water as a fuel supply is cost-free, but its opportunity cost is fundamental to finding the optimal strategy for
operations. This issue creates the need for a decision in each time period. Storage cannot be drained too low,
which might incur generation shortfalls or excessive thermal output. On the other hand, we also want to
avoid spillage of water and lost generation opportunities. Figure 1 summarizes the dilemma a hydro power
planner faces to operate a dam.

I
High Inflow I Future period Future period consequences

Y
—_— W) | - Lowthermal generation
/ - Low cost of future supply

Present Period

-

High releases of water

- Probably unserved energy

High inflow
& | - Spill of water

—_— # ——— | - Low future cost
/ | - Present cost could be lower
I

Low Infiow 1 - Wateravailablein future periods
to face dry season

\ ’ | 2 2
- Unserved energy isavoided
e — i — -
I

Figure 1: Diagram showing the dilemma hydro power planner faces under uncertainty.
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3 The Formulation

A mathematical optimization tool can find a hydro releasing policy that minimizes the expected operational
thermal cost by formulating an optimization problem such as the following:

Min {Variable Costs}
Subject to:
Energy Balance Equation
FlowLimits
GenerationLimits

Hydro Balance: V,,; =V, + Qnﬂow_ Qreleasc

Where the hydro balance equation shows the link between decisions in both the present and future.

Since water is free (no fuel cost) it is necessary to specify a final condition to minimise thermal costs along
the simulation period, and to avoid the storage being completely drained. These final conditions can be
represented as a target or a proxy for opportunity costs such as a deviation from targets, usually known as
the future cost function or scrap value function.

4 Stochastic Optimization

In decision making under uncertainty, the decision maker must make optimal decisions throughout a decision
horizon with incomplete information. Over the considered decision horizon, many stages are defined and
each stage represents a point in time where decisions are made or where uncertainty partially or totally
vanishes. The amount of information available to the decision maker is usually different from stage to stage.
According to the number of stages considered in the optimization problem we can distinguish between:

e Two-stage stochastic problems.
e Multi-stage stochastic problems.

The stochastic problem is graphically represented as a scenario tree.

4.1 Scenario Tree Representation

A scenario tree consists of nodes and lines grouped in stages as showed in Figure 2. Each node in the scenario
tree represents a possible state and it is a point in time where decisions are made.

The lines in the scenario tree are called “leaves” and represents the possible outcomes for the random
variables so each of them has a probability associated. The sum of probabilities associated to each node is
unity.

A path from the root node to any other node describes one realization of the stochastic process from the
present time to the period that node appears. A path over the entire planning horizon is called a scenario.
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Figure 2 shows a scenario tree consisting of 15 nodes, eight scenarios and three stages. This scenario tree
represents a decision-making process where the decisions are re-evaluated four times (three stages plus the
root node) along the planning horizon according to the revealed information at each stage.

51

52
53

54

)

55

56
S7

Root Stage 1 Stage2  Stage 3

Figure 2: Scenario Tree representation

Two-stage Stochastic Problem

Two-stage applies to a decision-making problem where decisions are made in two stages and there exists
uncertainty represented by a set of scenarios or samples. It can be assumed that two different decision
variable vectors: x and y are involved in this problem. Decision x is made before knowing the actual value of
the scenarios, while y is determined after knowing the actual value of the scenario.

Decision y depends on the decision x previously made. The decision-making process is as follows:
1. Decision x is made.
2. The uncertainty is revealed.
3. Decision y is made.

In this decision-making process, two kinds of decision are made:
1. First-stage or ‘here-and-now’ decisions (Decision x). These decisions are made before the realization
of the stochastic process. Hence, variables representing here-and-now decisions do not depend on
each realization of the stochastic process.

2. Second-stage or ‘wait-and-see’ decisions (Decision y). These decisions are made after knowing the
actual realization of the stochastic process. Consequently, these decisions depend on each
realization vector of the stochastic process. If the stochastic process is represented by a set of
scenarios, a second stage decision variable is defined for each single scenario considered.
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For all these decisions to be optimal, they need to be derived simultaneously by solving a single optimization
problem, so that the relationships among the decision variables are properly accounted for.

Multi-stage Stochastic Problem

In some cases, decision-making problems have more than two stages, and the two-stage stochastic
programming problem showed above is not appropriate to represent them. This fact motivates the use of
multi-stage stochastic programming problems. The decision-making process for a multi-stage stochastic
problem with r stages is the following:

Decisions x1 are made.
Partial uncertainty is revealed.
Decisions x; are made.
Partial uncertainty is revealed

vk wnN e

Decisions x3 are made.

2r-2. Uncertainty is revealed.
2r-1. Decision x; are made.

This decision framework for a multi-stage problem is conveniently visualized using a scenario tree diagram
like the tree in Figure 2.

4.2 Stochastic Problem Formulation: Two-stage vs Multi-stage

In a two-stage approach, the plan for the entire multi-period planning horizon is determined before the
uncertainty is realized, and only a limited number of recourse actions can be taken afterwards. In contrast, a
multi-stage approach allows revision of the planning decisions as more information regarding the
uncertainties is revealed along the planning horizon. Consequently, the multi-stage model is a better
characterization of the dynamic planning process, and provides more flexibility than does the two-stage
model.

Figure 3 shows an expected comparison when the same optimization problem is solved using simple average
deterministic, two-stage stochastic optimization, and multi-stage stochastic optimization. As can be
observed, the expected cost is lower in a multi-stage problem when the number of stages increases because
the decision maker has opportunity to re-evaluate his initial decision as additional information arrives.

The disadvantage of multi-stage stochastic optimization problems is that the dimensionality increases
exponentially when more stages are added and even when a few number of stages are added it can be
impossible to solve without using reduction or decomposition techniques because of large dimensionality
resulting problems.
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Figure 3: Comparison between expected costs and simulation times solving the problem in deterministic, 2 stages and multi-stage

Regarding stochastic optimization applied to hydro-thermal coordination, the two-stage approach only finds
applications for short term operational planning. For medium and long-term studies, a multi-stage stochastic
approach is more suitable because, in practice, the system operator or hydro plant companies are monitoring
the state of the dam continuously and can take new decisions (stages) at any time given the actuals and
historical inflow information.

4.3 Stochastic Problem Formulation: Node vs Scenario-wise Decomposition

A stochastic programming problem can be mathematically formulated using either a node-variable
formulation or a scenario-variable formulation. The first formulation relies on variables associated with
decision points while the second one relies on variables associated with scenarios.

Consider the example summarized in Figure 4 which shows a multi-stage stochastic problem where at each
stage there are two possible outcomes for the inflow: Wet and Dry.

: : __Y!?Il——‘

Root 1%t stage 2™ stage

Figure 4: Scenario tree

Node formulation

The node-variable formulation of this problem is as follow:
P) Min {C;(Ry1) + p21[C2(R21) + P31C3(R31) + p32C5(R32)]
+ P22[C2(R22) + p33C3(R33) + p31C3(R31)1}
Subject to:
Vi1 = Vo1 -Ri1 + 111
Vo1 =Vi1-Rp1 + 1
Va1 = Vo1 -R3q +13
Vaz =V31-Raz +13;
Vaz =Vi1-Ryp + 132
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Vaz = Vi3 - R33 + 33
V34 = Va2 -R3g + 134
Energy Balance
Storage Capacity
Max Capacity

Where:

V; k: End volume at stage i, scenario k

R; i: Storage release at stage i, scenario k

I; .- Inflow at stage i, scenario k

Pi k: Probability of scenario k at stage i.

C(Rl-,k): Thermal cost that results from release policy R;

Scenario-wise Decomposition (SWD) or scenario-variable formulation

The Scenario-wise Decomposition formulation of this problem is as follow:

P) Min {p11Xp21[C1(R11)+C2(R21) + C3(R31)] + P11XP22[C1(R12)+C2(Ry2) + C3(R35)]

+ P12XP21[C1(R13) +C2 (R23) + C3(R33)] + P12 X022 [C1 (R14)+C2(Ra4) + C3(R34)13
Subject to:

Vii =Vo1-Ri1+ 111
Vo1 =Vi1-Rp1 + 1
Va1 = Vo1 -R3q +13
Vig = Vo2 -Riz + 113
Voo =Viz - Ry + 132
Vi = Va3 - R3p + 33
Viz = Vo3 - Riz + 114
Va3 =Viz-Raz + 1z,
Va3 = Va3 - R33 + 134
Vig = Voa - Ris + 114
Vou =Vig-Rog + 134
Vay = V34 -R3g + 134
Energy Balance
Storage Capacity
Max Capacity
Vo1=Vo2=Vo3=V04
Vi1=V12=V13=V14
Vo1=Vas

Vo3=Va4

V31, Vay, Vas, V3, free

Where:

V; k- End volume at stage i, scenario k

R; .- Storage release at stage i, scenario k

I; .- Inflow at stage i, scenario k

Pi x: Probability of scenario k at stage i.

C(Rl-‘k): Thermal cost that results from release policy R;

Scenario-wise decomposition requires a larger number of variables and constraints including those marked
in blue above called “non-anticipativity”. These conditions guarantee that decisions cannot be dependent on
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the scenario realization. They are logical constraints related to availability of information at any decision point
in time. Red circles in Figure 4 shows non-anticipativity variables that need to be enforced at each node.

4.4 Recourse vs Non-recursive Multi-stage Stochastic Problem

The decision model should be designed to allow the user to adopt a decision policy that can respond to events
as they unfold. To formulate a multi-stage problem with dynamic stochastic data during time, emphasis has
to be placed on the decision to be made today, given present resources, future uncertainties and possible
recourse actions in the future.

Depending on the availability of information on the uncertain parameters at the beginning of each stage in
the scenario tree, different recourse actions are defined for them.

It is possible to identify two types of decision depending on the availability of the information at the beginning
of each stage:

1. Recursive: At the beginning of each stage, the decision maker has a perfect insight on the inflow
scenario that will be observed at that stage. Thus, the decisions can be adjusted for different inflow

scenarios.

2. Non-recourse: If inflow scenario values are revealed after the release policy is taken.

Recursive multi-stage

The recursive multi-stage can be represented in the following scenario tree Figure:

At 3% stage there are eight possible
outcomes fromroot to 37 stage.

Based on what happened in the past {leaves), a new decision is
made, this time the decisions are perfect foresighted until 2 stage.

Leaves information is
revealed inthisnode, so
the decisionsare perfect
foresighted until 1 stage.

Fourdifferentnodes in one stage
meansthatfouridiffe!ent
decisions can bdltaken between
this stage and the nextone.

random variable can take two \
- .“‘ ZI-differentoutcomes, soforthe \ '
period betweenrootand 1% \ | Node _gmeert T
| stage there are two different ~ - _ i
realizations oftherandom T
variable.

! .
\; ! twoleaves meansthat the 4 ! .

Roi:)t 15'stage 2" stage 3 sf:age

Time

Figure 5: Scenario tree for recursive multi-stage
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Non - Recursive multi-stage

The non - recursive multi-stage can be represented in the following scenario tree Figure:

At 3™ stage there are eight possible
outcomes fromrootto 3% stage.

Based on what happened in the past (leaves), a new decision is
made. The decisions are perfect foresighted until 2" stage. .

Leavesinformationis
revealed atthisnode, so
thedecisionsare perfect
foresighted until 15 stage.

! two leaves meansthat the

random variable can take two

- .'—' e '.dif'ferentoutcomes, soforthe
period betweenrootand 1

stage there are two differarit ~ -

realizations of therandom
variable.

meansthatfouridiﬁerent
decisions can be taken between
this stage and the next stage.

Node e . Four different nodes in one stage
I
i

Root 1%tstage 2" stage 3 stage

Time
Figure 6: Scenario tree for non-recursive multi-stage

The scenario tree representation doesn’t say if the multi-stage problem is recursive or non-recursive so in
addition to the diagram it is necessary to specify what type of recourse actions are available.

The following figure compares both approaches applied to stochastic multi-stage hydro problems where end
volumes have to be decided given uncertainty in future inflows.

In this stage two release decisions will be taken, inflows Aiatenanos;
One single release decision in this stage will betaken ~ Wetl and Dry1 are known, so two optimal decisions will 1: Wet. Wet
according to the unknown inflows Wet1;Dryl be taken. The uncertainty is included in the following 2' 7 : 5
stages. =\et, Dy
| 3: Dry, Wet
| 4: Dry, Dry

: T m Probability
.,./ Wetl P11

i ; < Wet2
’_ e | Dyl gm ,ef. Dryl P12
DI:_V2- : ‘ﬁw}-_
i ' ! ; Wet2 P21

Root 15'stage 2" stage Root 15'stage 2n stage Dry2 P22

Non - Recursive Recursive

Figure 7: Recursive vs non-recursive multi-stage stochastic problems
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4.5 Stochastic multi-stage hydro dimensionality issue

When using multi-stage stochastic optimization, many possible scenarios can be generated as shown in
Figure 8. For such a high number of scenarios, it is impossible to numerically obtain a solution for the multi-
stage optimization problem. Different techniques have been introduced in the literature to help solve this
problem and commonly involve scenario tree reduction or a more simplified tree solved with decomposition
techniques.

: ~ O That number of scenarios is equal to:
P
A : - Branches_perStage("5%=&*)
Pz
® Example: 21 stages and 3 branches per node
*<—— o o
® 3% = 1.04604 x 10'%cenarios!!!
®. ®- e
' : @ @ This problem is impossible to solve
BT @
® @

Root Stage 1 Stage 2 Stage3 StageT

Figure 8: Multi Stage dimensionality issue

5 Algorithms to solve stochastic hydro-thermal coordination

5.1 Multi-stage tree reduction

PLEXOS implements scenario reduction techniques as an option for solving these problems. These techniques
use strategies to reduce the number of scenarios in the optimization problem using algorithms for
constructing a multi-stage scenario tree out of a given set of scenarios.

Since generating a very small number of scenarios by Monte Carlo simulation is not desired because less
scenarios give less information, the objective is to lose minimum information by the reduction process
applied to the complete set of scenarios.

The disadvantage of this technique is that it is necessary to reduce the tree to a very small tree to make it
mathematically solvable by current solvers. In most real cases, the resultant tree doesn’t represent the
uncertainty well.

5.2 Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (also called simple “Dual Dynamic Programming”) is a method
developed in the 1970s (Read, 1979) where the hydro temporal coupling decisions are broken and
replaced by the concept called the Future Cost Function.

The hydro problem at each stage becomes:

Objective function Z(vi{_1) = min(CG + a;) (1)
Hydro Constraints Ve=V1+I—R->m (2)
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Vmin =vs Vmax (3)

Gh=p-q (4)
Generation Constraints Gmin < G < Gmax (5)
Load supply Z G=D (6)

Where:
a: Future Cost Function (FCF)

v;: stored volume at the end of stage t

V;_q: initial volume at stage t, or stored volume at the end of stage t-1
R: Release or outflow volumes (turbined and spilled)

I: Inflow volumes (lateral inflow plus releases from upstream plants)
Vpin: Minimum storage (if required)

VUmax: Maximum storage

G: Energy production

Gmax: Maximum generation capacity

An iterative approach is needed to create the Future Cost Function with cuts that approximate the real future
cost function with a piecewise linear function (see Figure 10) that samples the storage at “interesting” states.
One cut is created at each iteration and the method stops when a convergence criterion is met.

Schematic representation of SDDP

The multi-period stochastic hydro problem can be decomposed in multiple steps where each step can be
represented by the sum of:
a) Actual cost: Corresponds to the thermal variable generation costs in that step.

b) Future cost: Corresponds to the future thermal variable generation costs associated to the future
steps.

At each step, the corresponding actual costs decrease if more water is used but future costs increase so
there is an optimal point where the release decision minimizes the sum of actual and future costs.

Dam level in (t+1) period is: Qgen
Spill
= : — ey O release
Via = Vet Qinow 4 JP. Irrigation
Ecological
Leaks
v, Vi A Evaporations
f ActualCost + FutureCost
+-Vy Higher dam Level in the future means less future costs — -
FutureCost Actual Cost
V.,
< FutureCost
_Stage t+1_ : : .8 - v
optimal )
t t#1  FC, FC ., [ e

Figure 9: Actual and future costs schematic representation
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Each step is modelled as a linear programming (LP) problem and the iterative procedure has two passes:
forward and backward. One cut for the future cost function at that particular step is created in each backward

pass.
ArmuaiCast :mﬁ/

Futwrelost zqir+ 1)

/

\

Endlolume l:m: _'I

Figure 10: Future cost function approximation

The algorithm to build the approximations to the Future Cost Function is summarized in the following section.

SDDP Algorithm

Forward pass

Define a set of inflow scenarios I, = {I}, ..., I[", ..., 1M} for all stages t =1, ..., T
For each inflow scenario I, = I}, ..., I, ..., I}
Initialize storage value for stage 1 as v = v,

Fort=1, .., T
Solve the one-stage scheduling problem for initial storage v{"* and inflow IT":
min ¢ (ug’) + 0piq (7)
Subject to
v, =vt—ult —s, + 1"
vml S vmax
uzn S umax
A1 2 PrarVesr + 0041 n=1,.,N
Next
Next
Backward pass

Set number of linear segments N=number of initial storage values M.
Initialize future cost function for the last stage as zero: {¢},,and 6}, ,} forn=1, ..., N

Fort=T,T-1,..1
For each storage value v, = {v[*, m =1, ..., M}
For each inflow scenario I, = I}, ..., IK, ..., IK
Solve the one-stage scheduling problem for initial storage v{*and inflow I{‘.
af (V") = Min Ce(Gy) + teyq (8)
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Subject to
Vepr = V" — U — s +If > wf
vt+1 S vmax
ut S umax
A1 = Piv1Vesr 041 n=1.,N
Next

Calculate the coefficient and constant term for the mth linear segment of the future cost function in the
previous stage:

_ k _ k
o = YRo1 pexmf and 81" = Y-y prxaf (vi) — et v
Next
Next

Where:
m: set of plants immediately upstream

u;: turbined outflow volume during stage t
s;: spilled outflow during stage t

Lower bound calculation
The lower bound is calculated as:
Ziower = A1Vy (9)

Upper bound calculation

The upper bound is calculated as the sum of all immediate costs along the study period.
T

2= )

t=1
Optimality Check
Optimality check is achieved when the lower bound (See equation (9)) is inside the following confidence

interval.
Equation 10 shows the expected operation cost which is estimated as the mean total cost over all simulation

scenarios.
B i ) (10)
Z2=—
M Z
t=1
Equation 11 is generally used for a 95% confidence interval.
Z € [Z— 1.9606;% + 1.960] (11)
Where & is obtained by Equation 12 which is the standard deviation of the estimator.
1/2 (12)

o=

T
1 m =
o1 1;(2 —Z)Zl
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New iteration

If the lower bound is outside the confidence interval, the backward recursion is executed again with an
additional set of storage values. The natural candidates for the new values are the volumes {v[* =1, ..., M}
produced in 0.

Solving the full multi-stage stochastic graphically tree using SDDP

The SDDP algorithm can be explained graphically using the following multi-stage tree:

o
@

900090000000

/
|

89600 06-@

|

ne
-

t=0 t=1 t=T-1

-

Figure 11: Full multi-stage tree to be solved using SDDP algorithm

Blue paths are the forward simulation paths and light blue are the paths representing uncertainty, these light
blue paths are used in the backward pass.

Forward Pass

The forward pass can be summarized in the following figures, where the problem is decomposed in steps
with a duration coincident with stage duration and the link between stages is represented using a Future
Cost Function (FCF).

The first step mathematical problem can be represented using the following diagram:
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Root 1t stage 27 stage
Figure 12: First step SDDP forward simulation, sub problem 1

The second step mathematical problems can be represented using the following diagrams:

Root 15" stage 2" stage

Figure 13: Second step SDDP forward simulation, sub problem 2
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Root 15t stage 2nd stage

Figure 14: Second step SDDP forward simulation, sub problem 3

H P1 = i

d i
lg'fl l L] -I L
/ ¥ o=
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¢ 60—
'\.\. —

T Ps TT— . i

\'. 5 1 q_-\_\-h_"""—-..__

\ | : =

5 °____,-—

N B2 — ‘ =

\. pg ; M‘““"“H-\._

: ﬂg o e __‘_'__,_,_,-—""'-
—

Root 15*stage 2"9 stage

Figure 15: Second step SDDP forward simulation, sub problem 4
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P
| P2
Pz

By

Ps

b7
Pg ~
Pg ‘ s

Root 1%'stage 2nd stage

Figure 16: Second step SDDP forward simulation, sub problem 5

The sub-problems are independent and sub problems in same step can be run in parallel.

The third step is similar.

Backward Pass

The backward pass at each stage can be summarized in the following figures, where the yellow branches are

the independent problems solved at each stage. Each backward stage produces a new cut to calculate the
FCF.
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Figure 17: SDDP backward pass and FCF approximation at t=T-1
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Figure 18: SDDP backward pass and FCF approximation at t=1
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Figure 19: SDDP backward pass at t=0

It can be observed that all nodes of the forward and backward pass are solved independently.

Simplified tree solved using SDDP
SDDP algorithm can be formulated to solve the full multi-stage stochastic tree but it has the same

dimensionality issue described in Figure 8, where the number of sub-problems are equal to:
LeavesNumberStages

The simplified SDDP tree reduces the size of the problem and then become mathematically solvable. This
reduced tree has the following number of subproblems: Leaves X NumberStages. The following figure
summarizes this simplified tree where red paths are the paths explored during forward simulation and grey
branches represent uncertainty at each stage.
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Figure 20: Full tree vs SDDP tree

5.3 Hanging branches

This method was researched and developed at Energy Exemplar’s Adelaide office during 2013 -2015. The
problem is formulated using recursive scenario-wise decomposition formulation and the SDDP stochastic

tree.

The full tree can be classified in full branches, hanging branches and death branches as showed below:
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Figure 21: Full multi-stage tree illustrating full, hanging and death branches

The resulting tree to be formulated in an optimization problem is:

FullBranches . Stages
__,_//f/-/? o = Hanging Branches o D__
/‘//‘-/
/'//

o« e —
¢ 6 ” '3 0 " R

/| | [\

| / ‘ \ | | I\\
0 o ¢ T » & b éb T T
0 6 ook @ 6 & o b R

Figure 22: Reduced multi-stage tree illustrating the equivalent tree.

As in SDDP, this method formulates a full recursive multi-stage stochastic problem.
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This method in PLEXOS is defined using the Global class of objects as showed in figure below:

% Hanging branc

hes are defined using Global Class

4 @Global
4 [m] g Globals
& FCF Constant

Tree Stages Position
Tree Stages Leaves

Property

Tree Stages Hanging Branches
Tree Stages Hanging Branches
Tree Stages Hanging Branches
Tree Stages Hanging Branches

Tree Stages Hanging Branches

Property

Tree Stages Leaves
Tree Stages Leaves
Tree Stages Leaves
Tree Stages Leaves
Tree Stages Leaves

Tree Position Exp Factor
Tree Leaves Exp Factor

Tree Stages Hanging Branches 103
& Deterministic Stages

Value Data File Units Band
5 N 1
5
5 = , . Stage
3 7 number
5 5

\Y

Hanging Branches per stage

Value Data File Units Band
1

_ Stage
number

]
1 2
1 3 >
1 4
1 5

P P P p— Band Property Value  DataFile Units Band

Tree Stages Position 1 1 % Treestage Count 104 = 3
Tree Stages Position 2 2

Tree Stages Position 3 3 Property Value Data File Units Band
Tree Stages Position 4 4 e Period Type promcs . 7
Tree Stages Position 5 s

Sample Count = FullBranches x ((Stages — 1) x Hanging Branches + 1)

Sample Count=1x ((104—-1) x5+ 1) =516

Stochastic Samples: 516

This is the number of samples drawn for each °
Variable object in the simulation.
Reduced Samples:

Reduction Relative Accuracy:

This sample count should be set:

In Stochastic [Risk Sample Count]

e Asthe Band on Variable [Profile] (for
the inflow variables)

As the Band on Data File [Filename]
(for the inflows)

o=
1% .

Full Branches — Information is entered by the user in a csv file

\,
N

Full Branches per stage

Outputs are reported just for full branches!

Hanging Branches ——> Generated Synthetically with PLEXOS —— Fitting ARMA time series to historical profiles

~N
~ Sampling historical inflows

Figure 23: Hanging branches implementation in PLEXOS for 2 years horizon, 5 hanging branches and 1 full branch per stage and stages

placed at the end of each week.

To help to improve the speed, the hanging branches were designed to have one block per stage from the
stage that follows the stage they were created. This is like the equivalent SDDP reduced tree showed in Figure

20.
T | . 5p
| 5b :
- = ‘\\
5 sb “.5b 50 |sb {b
% : Y
o“/ o H '/ ¢ n
' / ‘ \sb
/ 5b
/1b b, 1b b J1p 1b .  1b/ 1b,
[ ] [ ] ® + o O [ ] o ¢
| |
| sl
: AT :

Full Branches @

Hanging Branches 0

\1b

i

Figure 24: First stage of hanging branches have a block duration equal the blocks specified and the further stages are reduced to 1

block. This example is showing the reduction when the user specifies 5 blocks LDC.

Hanging branch weights

When the hanging branches equivalent multi-stage tree is formulated, it exists a solver limitation to solve

the problem in one single step.
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For example, if the user would like to solve this problem: 120 stages, 40 hanging branches per stage and 40
full branches for 10 years using 5 blocks LDC per month. This means the following:
e The first 41 branches (40 hanging + 1 full branch) has 1/41 probability occurrence.

e The second stage has 41 branches (40 hanging + 1 full branch) so each one has 1/41 probability of
occurrence. So, from the first stage the probability for each second stage branch is 1/41*1/41.

e For next stages is the same

Then solving the problem from the first stage until the last one produces tiny weights for future branches,
this is illustrated in the table below for the example described above:

Table 1: Brach Weight per stage solving the problem from root node

Stage
Number Probability | Probability
1 1/41 0.024390244
2 (1/41)72 0.000594884
3 (1/41)"3 1.45094E-05
4 (1/41)74 3.53887E-07
5 (1/41)75 8.63139E-09
6 (1/41)"6 2.10522E-10
7 (1/41)77 5.13468E-12
8 (1/41)"8 1.25236E-13
9 (1/41)9 3.05454E-15
10 (1/41)710 7.45009E-17
11 (1/41)7M11 1.81709E-18
12 (1/41)212 | 4.43194E-20
13 (1/41)713 1.08096E-21
14 (1/41)714 2.63649E-23
15 (1/41)215 | 6.43046E-25
16 (1/41)716 1.56841E-26
17 (1/41)717 3.82538E-28
18 (1/41)718 | 9.33019E-30
19 (1/41)719 2.27566E-31

A safe range of objective coefficients guaranteed by a commercial solver is between 107-6 and 1076, that
means it can only be ensured a multi-stage solution until stage three.

The multi-stage stochastic optimization says that at each stage the decision maker can change his mind and
take a new decision because additional information is revealed, so this limitation can be solved in the same
way a multi-stage stochastic problem is solved in the real life: using a rolling horizon approach splitting the
horizon in steps. The only information passed between steps is related to storage end/initial volumes.
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Hanging branches with rolling horizon

The Rolling Horizon approach is designed to overcome the limitation of vanishingly small probabilities deep

into the future. The method looks ahead until certain point in the future and the end volumes in that point

are passed as initial volumes at the start of the next step.

For a horizon divided in four different steps, the algorithm works as follows:

Step 1:
a)
b)

Step 2:
a)
b)

Step 3:
a)
b)

d)
Step 4:
a)

b)

d)

Starting date is beginning of root node.
Multi-stage tree formulated and up to some stage in the future (user decides when) no more

branches to avoid weights issue.

Starting date is beginning of stage 1.
End volumes in step 1 are passed as initial volumes in step 2.
The past branches are not formulated because that part of the problem is already solved.

Starting date is beginning of stage 2.

End volumes in step 2 are passed as initial volumes in step 3.

The past branches are not formulated because that part of the problem is already solved.

More hanging branches are formulated when the weights provide information to the optimization
solver.

Starting date is beginning of stage 3.

End volumes in step 3 are passed as initial volumes in step 4.

The past branches are not formulated because that part of the problem is already solved.

The problem becomes a simple deterministic problem since no more uncertainty is added because it
is a recursive multi-stage problem.

Figure 25 shows the hanging branches method for a multi-stage problem consisting of 4 stages, 2 hanging

branches per stage and 1 full branch where the horizon is divided in 4 different steps.
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Figure 25: Rolling horizon for hanging branches

5.4 Comparison of different stochastic programming algorithms

Table 2 summarizes the difference between the three methods studied: scenario tree reduction, SDDP and
Hanging Branches approach to solve stochastic multi-stage problems.

Table 2. Differences in multi-stage formulations.

‘ Scenario reduction SDDP Hanging Branches ‘
Documented in literature? Yes Yes No. Method was
developed at Energy
Exemplar
Recursive vs Non Recursive* | Non Recursive Recursive Recursive

Multi-stage tree exploration

No resampling

Some SDDP versions resample No resampling
the tree allowing multiple

exploration paths

Speed solution

An equivalent SDDP tree is
impossible to solve using
today’s available computers

It should equivalent to
SDDP but faster than
scenario reduction.

It uses decomposition
techniques and parallel
resolution of independent sub
problems to improve
simulation performance.

Linear or Integer?

Linear or MIP

Linear Only Linear MIP

Implemented in PLEXOS?

Yes

No Yes
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6 Case Study

The following is a case study showing the resolution of the problem using SDDP and hanging branches

method.

6.1 Data of the system

The following model has 1 hydro generator with storage, 1 thermal generator and 1 node. Each unit has a

max capacity equal to 100 MW.

The operational costs (C) are 1 $/MWh for the thermal generator and 0 $/MWh for the hydro generator. The
unserved energy cost (USE) is 10 S/MWh.

Table 3 summarizes generators data.

Table 3: Generator technical data

Generator Name Node MSL(MW) Max Capacity (MW)

Thermal Gth Gens 0 100
Hydro Gp Gens 0 100

Table 4 summarizes generator cost parameters.

Table 4: Generator costs parameters

Name C($/MWh) |

Cin 1
Ch 0
Cuse 10

The horizon is segmented into 3 blocks. The first two blocks have 1 week duration and the third block has

two weeks duration. The loads (D) are 90, 160 and 110 MW for blocks 1, 2 and 3 respectively.

The initial volume () of the storage is 60.48 Mm? and its max capacity is 100 Mm3. The storage has recycle

end effects with a penalty cost equal to 1.5 times unserved energy cost (1.5 USE). The hydro generator has 1
MW/m3/s efficiency. The inflow is 50 m3/s for the first block; then there are 3 inflow possibilities for the
second stage: 10, 50 or 90 m3/s and the same 3 inflow possibilities for the last stage.

Table 5 and Table 6 summarize the additional input information.

Table 5: Storage properties
Min Vol (Mm3) Max Vol (Mm3) p (MW/m3/s)
60.48 100 1

Table 6: General Information per block

Stages (t) 1 p 3 \

Duration (h) 168 168 336
Load (MW) 90 | 160 @ 110
10 40
Inflow (m3/s) 50 50 @50
90 60
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100 MW

Initial Vol = 5048 Mm*
Max Vol =100 Mm*

=

Figure 26. Representation of the Power System

The optimization problem determines the optimal dispatch of the system that minimizes production costs
given inflows uncertainty. Each decision is re-evaluated at the beginning of each block when new inflow

forecast arrives to the decision maker.

The problem is a stochastic multi-stage optimization problem that can be represented in mathematical terms

as shown in equation (13) where each block represents a stage:

H K@)
Z = min Z Z Dej - At (C_th-G_thyy + C_USE - USE ;)
t=1k=1
Subject to:
G—ht,k + G—tht,k + USEt,k = Dt
G_hex =p-qex
Ve = Vere 11—
G_thmin G thf k] G _thmax
G_hmin htk G hmax
0 - USEt k
Vmin Ve k Umax
Where:

Ptk Probability of sub-problem k occurring in stage t. Note that YK pk=1
At: Duration of the stage

C_th: Cost of thermal generator per MWh

C_USE: cost of unserved energy per MWh

G_th; : Thermal generation of sub-problem k at stage t
G_h¢ : Hydro generation of sub-problem k at stage t
USE¢ y: Unserved energy of sub-problem k at stage t

V¢ i+ Stored end volume of sub-problem k at stage t
Ve_1k: Stored end volume of sub-problem k at stage t-1
D;: Load in stage t

IzInflow (I = u-Agg)

R:Release (R = u - q; )

u: Hydro factor, refer to equation (14)

Ay i Inflow (m3/s) of sub-problem k at stage t
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Equation (14) shows the value for factor “u” to convert hydro inflows into cubic meters.
s
u = u(At) = 3600 [E] - At[h] = 0.0036[Ms] (14)

Because the stages have different durations then equation (14) takes the following values:
u;, =u(168) = 0.6048
u; = u(336) = 1.2096

By using the equations above, an inflow equal to 50 m3/s stores 30.24 Mm? of water in the first and second
stages, and 60.48 Mm?3 in the last stage.

1 MWh deviation in the end effect recycle condition is equal to the following cost per Mm?3:
$ _ $ [ MW ] 106 (15)
Mm3| = |Mwn| P m3 /sl 3600[s/h]

=15-10-1-277.78 [$/Mm3]
=1.5-2777.78 [$/Mm?]

This value can be used to create a Future Cost Function (FCF) at the end of the planning horizon. The
constraint is built using equation (16).
= A + T (Vek = Ve-1) (16)

Equation (16) takes the following values
az = 0—15-2777.78 (v3) — 60.48) = 4166.67 - (60.48 — v3 )

Equation (13) can be rewritten in the following extensive form
9

3
Z =min |G_thy, + 10 - USE, , + %Z [G_thy +10- USEy,] + %Z [G_thy +10- USEy ]
k=1 P
G_hyy + G_thy y + USEy, = 90
G_hyy + G_thy 1 + USE, ; = 160
G_hys + G_thy 5 + USE, 5 = 160
G_hys + G_thy s + USE, 5 = 160
G_hyy + G_thy 1 + USE;; = 110
G_hyy + G _thy, + USE; 5 = 110
G_hyy + G_thy s + USE; 5 = 110
G_hys + G_thy 4 + USE, , = 110
G_hys + G_thy s + USEy 5 = 110
G_hyq + G _thy e + USE, ¢ = 110
G_hyy + G_thy + USE,, = 110
G_hyg + G _thyg + USEyg = 110
G_hyo+ G_thy o+ USE;q = 110
Vi1 = vo + 3024 — 0.6048 - G_hy
Va1 =11 +6.048 — 0.6048 - G_hy
Vps = V11 +30.24 — 0.6048 - G_h,
Vyy = Uy s + 54432 — 06048 G_hy
Va1 = Ugq +48.384 — 12096 G_hy
Vyp = Va1 + 6048 — 1.2096 - G_hs.,
Vyy = Ugs + 72576 — 12096 - G_hy 5
Vya = Usy + 48.384 — 12096 G_hs ,

=1
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V35 = Upp + 60.48 — 1.2096 - G_hy s
V36 = Uy + 72.576 — 1.2096 - G_hs ¢
V3, = Uy + 48.384 — 1.2096 - G_hs ;
V3 = Uy 3 + 60.48 — 1.2096 - G_hy g
V3o = Vp3 + 72.576 — 1.2096 - G_hq

0 G thek] 100

0 G_hg 100

0| o o = |USEwk| | 90

0 USE,, |~ |160

0 USE, | [110

0 | v | L2100
(17)

6.2 Model solution using SDDP algorithm.

Figure 27 illustrates the decision tree of the stochastic problem. It shows the sub-problems (t,k) together
with the inflow data (4, ).

vy = 60.48

| t=1 | t=2 | t=3 |

Figure 27. Decision Tree

When this system is solved using SDDP algorithm, 4 sub-problems are solved in forward pass (1 on the first
stage and 3 on the second one) and 12 sub-problems are solved in backward pass (9 on the last stage and 3
on the second one). Equation (18) shows the sub-problem to be solved in each iteration.

Zyx(ve—rx) = min|[At- (C_th- G_thy + C_USE - USE, ;) + ay ] (18)
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G—ht,k + G_tht,k + USEt,k > Dt

G_hexy =P qex
Ve = Vi1 +1—R - Ty
Atk =0
G_himin G_ht G_hmax
G thmm‘ [G tht'k] < thhmax
USE; |~ | USE;
Umin vt,k Umax

Where:
a: variable representing the expected future cost value of the following stage sub-problem

ITERATION 1

Direction: Forward Pass

Equation (18) takes the following form for the stage 1 on forward pass in iteration 1.
Z1(0) = min[G_th; + 10USE; + a4]

G_thl + G_h1 + USE1 = 90
v, = 90.72 — 0.6048 - G_h,

a; =0
0 G_hy 100
0 G th1 100
< = -
o| =%~ |usE,
0 vy 100

Equation (18) takes the following forms for the stage 2 on forward pass in iteration 1.
Zz‘l(vl‘l) = min[G_thz’l + 10USE2‘1 + 0.’2’1]
G—thz,l + G_hz‘l + USEZ,l =160
172‘1 = Ul,l + u- A2,1 - 06048 : G_hz‘l

0(2,1 = 0
0 G_hyq 100
0| o, = G_thy, - |00
0 USE, 160
0 v, 100

Z2‘2(U1‘1) = min[G_thz’z + 10USE2‘2 + 0(2,2]
G_thzyz + G_hz‘z + USEZ,Z = 160
Vpy =11+ U+ Ay, —0.6048-G_hy,

0(22 2 0
0 G_h;, 100
)] G_th,, ~ |100
0 USE, 160
0 v, 100

Zy3(vy1) = min|[G_thy 3 + 10USE, 5 + ay 5]
G_thys + G_hy 5+ USE, 5 = 160
Vy3 =V11+ U A3 —0.6048:G_hy3
a3 =0
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G_hzsl 100

0

0f _, _|Gthas| _
0 USE,
0 Vs 100

Because in this first pass we do not have approximation for the Future Cost Function (FCF), the stored volume
at the end of the stages is zero (See Figure 28). This means that all the inflows were used to generate
electricity, and the remaining load was supplied using the thermal gen and perhaps incur in unserved energy.

vy = 60.48

| p=i | =2 | t=3

Figure 28. Iteration 1 Forward Pass.

The results for each sub-problems are presented below. Table 7 summarizes the costs of each sub-problem.
X171 = [G_h1,1r G_thy 4, USE1,1r171,1]
%11 =1[90,0,0,36.29]
X1 = [G_hz,p G_th,,,USE, , 172,1]
xzyl = [70, 90, 0, 0]
Z51(0) =90+ 10-0 = $90/hx168h = $15,120
Xp7 = [G_hyp, G_thy , USE, 5,v,|
x5, = [100,60,0,6.05]
Z5,(0) =60+ 10-10 = $60/hx168h = $10,080
x2'3 = [G_h2'3, G_th2'3, USE2'3, v2'3:|
X33 = [100,60,0,30.24]
Z,3(0) =60+ 10-0 = $60/hx168h = $10,080
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Table 7: Results of Iteration 1 Forwards Pass.

t K v, AC FCF

1 1 3629 0 0

2 1 0 15120 0
2 6.048 10080 0
3 3024 10080 0

As an example, the results of the sub-problem 1 of stage 2 means that the 10 m3/s are used to generate 70
MW with the hydro gen and 90 MW with the thermal gen, so there is no unserved energy. Thus, the cost of
the sub-problem is $100,800.

Direction: Backward Pass
Equation (18) takes the following form for the stage 3 on the backward pass of iteration 1.
Z31(vy1) = min|[G_thyy + 10 - USE3; + a3,|
G_ths, + G_hz, + USE;; = 110
V31 =Vp1+ u-Az; —1.2096-G_hj,
az; =0
az1 = 4166.67 - (60.48 — v ;)
0 G_hs, 100
0 < G _ths 1] 1100‘
o~ USE3 110
0 100

Z3'2(v2'1) = min[G_th?,’Z + 10 : USE3'2 + 0(3’2]
G_th,3’2 + G_h,3’2 + USE3’2 = 110
v3’2 = vz’l + u- A3’2 - 12096 " G_hg’z

az, =0
az, = 4166.67 - (60.48 — v3,)
0 G_hs, 100
of _ . G _ths 2l lmo‘
0|~ USE3 110
0 100

Z3'3(v2'1) = min[G_th3’3 + 10 - USE3'3 + 0(3’3]
G_th,3’3 + G_h,3’3 + USE3’3 = 110
V33 = Uy + U Ags — 12096 G_hs

0(3,3 >0
@33 = 4166.67 - (60.48 — v 3)
0 [G h3z1  [100
0 <x G_ths < 100
0 USE; 110
0 3 100

Z34(vy2) = min[G_thy 4 + 10 - USE3 4 + a3,4]
G_thss + G_hg, + USE5, = 110
V34 =Vpp+ U-Azs—1.2096- G _hj,
0z, =0
34 = 4166.67 - (60.48 — v 4)
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0 G_h3a 100
0| ., G th34] lmo
ol = USE3 = [110
0 100

Z35(va2) = min[G_thys + 10 - USE3 5 + 3]

G_thss + G_hys + USEss = 110

V3g =Vyp + U*Azs—1.2096-G_hs3s
aze =0

azs = 4166.67 - (60.48 — v35)
0 G_hss 100
of -, G _ths 5] lmo‘
0
0

USE3 110
100

Z36(va2) = min[G_ths g + 10 - USE3 ¢ + @3]
G_thsg+ G_hgg+ USEs ¢ = 110
V3 =Vpp + U A3 — 1.2096G_hj 4
aze =0
Az = 4166.67 - (60.48 — v3¢)
0 G_hse 100
0l -, _|¢ th%l lmo
0 USE; 110
0 100

Z37(vy3) = min|[G_thy; + 10 - USE3; + a3 ]
G_ths; + G_hy; + USE;,; = 110
V37 =Vp3+ u-Az; —1.2096: G_h3,
az; =0
azy = 4166.67 - (60.48 — v ;)
0 G_hs; 100
V] G _ths 7] lmo‘
0|~ USE3 = [110
0 100

Z3,8(v2,3) = min[G_th3‘8 +10-USE3g + a3‘8]
G_thsg + G_hyg+ USE3g = 110
V3g =Vp3+ U-Azg—1.2096-G_h3g
azg =0
azg = 4166.67 - (60.48 — v34)
0 G_hsg 100
of . G _ths 8] Imo‘
0|~ USE3 = [110
0 100

Z39 (172,3) = min[G_thgyg +10-USE3q9 + a3‘9]
G_th3g+ G_h3g+ USE39 =110
V39 =Vp3+ U A39— 12096 G_h3q
az9=0
az9 = 4166.67 - (60.48 — v34)
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G_hsq 100
G_ths| _ |100
= 1110

100

The FCF’s are calculated using the related sub-problems, as shown in Figure 29. Figure 29 also shows the

(aq M1 @ vi,=—06048
vy, =24.19
d32 T3

resultant volumes in the last stage.

1lxaxﬁmxﬁxhhhhu v3, = 60.48
o e B @ v;;=6048

v;, = 60.48
O v; . =60.48
v; ¢ = 60.48
v;, = 60.48
v;e = 60.48
;o= 6048

=4 t=2 t=4 |

Figure 29. Iteration 1 Backward Pass.

The results for each sub-problem are as follows. Table 8 summarizes the costs of each sub-problem.

%3, = [0,100,10,48.384]
Z51(0) = 100 + 10 - 10 = $200/hx336h = $67,200
X3, = [0,100,10,60.48]
7Z5,(0) = 100 + 10 - 10 = $200/hx336h = $67,200
X33 = [10,100,0,60.48]
Z33(0) = 100 + 10 0 = $100/hx336h = $33,600
X34 = [0,100,10, 54.432]
Z3,4(0) = 100 + 10 - 10 = $200/hx336h = $67,200
X35 = [5,100,5,60.48]
Z35(0) = 100 + 5 10 = $150/hx336h = $50,400
X36 = [15,95,0,60.48]
Z36(0) = 95+ 10+ 0 = $95/hx336h = $31,920
X3, = [15,95,0,60.48]
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Z57(0) = 95+ 10 - 0 = $95/hx336h = $31,920
X3¢ = [25,85,0,60.48]
Z55(0) = 85+ 10 - 0 = $85/hx336h = $28,560
X3¢ = [35,75,0,60.48]
Z34(0) = 75+ 10 - 0 = $75/hx336h = $25,200
X, = [37.5,100,22.5,19.66]
Z,,(0) = 100 + 10 - 22.5 = $325/hx168h = $54,600
X, = [60,100,0,30.24]
Z,,(0) = 100 + 10 0 = $100/hx168h = $16,800
X33 = [60,100,0,54.432]
Z,3(0) = 100 + 10 0 = $100/hx168h = $16,800

Table 8: Results of Iteration 1 Backward Pass

t  k AC FCF T |

3 1 67200 | 50400 4166.667
2 67200 |0 4166.667
3 33600 | O 2777.778
4 67200 | 25200 4166.667
5 50400 | O 2777.778
6 31920 | O 277.7778
7 31920 (O 277.7778
8 28560 | O 277.7778
9 25200 | O 277.7778
2 1 54600 | O 2777.778
2 16800 O 2407.407
3 16800 | 21840 277.7778

From the estimations of the third and second stage it is possible to calculate new approximations of FCF or
Benders Cuts for the second and first stage, respectively.

First, it is necessary to weight the expected values of the dual variable (rt) and the expected values of the
optimal solution (a) according to the probability of occurrence of the sub-problem, as shown in equation (19)
and equation (20).

K(©) (19)
a;,k = Z Pk (ACt+1,k + FCFt+1,k)
k=1
K(t) (20)

* —
Tk = é PrTet1,k
k=1

Since the volumes obtained for each second stage sub-problem are different, then three different cuts are
calculated for the second stage, using the corresponding sub-problem of stage three. Equation (19) takes the
following values

1
1= (§) -(2+67,200 + 33,600 + 50,400) = 72,800

1
az, = (§> - (67,200 + 50,400 + 31,920 + 25,200) = 58,240
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1
Qy3 = (§> - (31,920 + 28,560 + 25,200) = 28,560

1
] = <§> - (54,600 + 2 - 16,800 + 21,840) = 36,680

Equation (20) takes the following values

1
M, = (g) - (2-4,166.67 + 2777.78) = 3,703.70
1
w5, = (5) - (4,166.67 + 2777.78 + 277.78) = 2,407.41
1
M, = (5) - (3-277.78) = 277.78

1
my = <§> - (2777.78 + 2407.41 + 277.78) = 1,820.99

The expected value of the dual variable and the expected value of the optimal solution together with
equation (16) are used to build Benders Cut to add to the master problem.
a1 = 72800 —3703.70 - (v, — 0) (21)
@y, = 58240 — 2407.41 - (v,, — 6.05)
a3 = 28560 — 277.78 - (v,3 — 30.24)
a, = 36680 — 1820.99 - (v, — 36.29) (22)

Equation (21) shows the constraints that must be included in the sub-problems of the second stage. Similarly,
equation (22) shows the constraint that must be included in the sub-problems of the first stage in the second
iteration.

From Table 8 it can be observed that in stage 3, the natural inflows for sub -problems 1 and 4 (ks= 1, 4) are
not enough to meet recycle end volume conditions, so these sub problems are penalized with future costs.
For these subproblems it can be observed that the thermal generators are generating at maximum capacity,
the hydro gen is not generating and there are 10 MW of unserved energy. Therefore, the cost of these sub
problems has two components, one based in the actual costs AC ($200) and the FCF estimation ($150). Both
have to be multiplied for the stage duration, resulting in a total cost of $117,6000 ($67,200 + $50,400).

The convergence is calculated in equation (25) using equation (23) for the Upper Bound, and equation (24)
for the Lower Bound

1 & (23)
Zypper = Ez ACy
k=1
Zlower = AC]_ + FCF1 (24)
Zupper - Zlower (25)

e=——F100<€=1%
Zupper

Above equations take the following values:
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(15120 +2-10080) (3-67200 + 33600 + 50400 + 2 - 31920 + 28560 + 25200)
VA =0+ +
upper 3 9
= 56,560

Ziower =0+0=10

104,760 — 0

. = 0 0
104,760 100 =100% > 1%

ITERATION 2

Direction: Forward Pass

Equations (21) and (22) are added to the sub-problems of iteration 2 on the forward pass.
For stage 1:
Z,(0) = min[G_th, + 10USE; + a4]
G_thy +G_hy + USE; =90
v; =90.72 — 0.6048- G_h,

a; =0
> 36680 — 1820.99 - (v; — 36.29)
0 G_hy 100
0 e th1 100
0 - USE1
0 100

For stage 2:
Zy1(vi_1) = min[G_thy 1 + 10USE, 1 + ay,|
G_thy; +G_hy, + USE; 1 = 160
Vg =V11t+ u-Ay; —0.6048-G_hy,

0(2,1 = 0
@y, = 72800 — 3703.70 - (v, — 0)
0 G_hy, 100
0| o, = [G-thaa|  [100
0 USE, 160
0 v, 100

ZZ,Z(UZ:—I) = min[G_thz‘z + 10USE2’2 + az‘z]
G_thz’z + G_h2‘2 + USEZ,Z = 160
v2‘2 = vl’l + u- AZ,Z - 0604’8 " G_h2‘2

0.’2’2 >0
@y, = 58240 — 2407.41 - (v,, — 6.05)
0 G_ha 100
0| _, —|G-thez| _ [100
0 USE, 160
0 v, 100

Z,3(v{_1) = min[G_th, 5 + 10USE, 5 + ay 3]
G_thys + G_hy 3+ USE, 5 = 160
Vy3 =V11+ U A3 —0.6048:G_hy3
a3 =0
ay3 = 28560 — 277.78 - (v 3 — 30.24)
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G_hy3 100

<x= G_thys < 100
USE; 160

Vs 100

o O O o

We have now an approximation for the FCF, the stored volume at the end of stages 1 and 2 have a value
different from 0 (see Figure 30).

o) = 36680
) = 182099

053 = 28560
nr;‘g = 277.78
Hp3 M3 3

Figure 30. Iteration 2 Forward Pass.
Table 9 shows the results of iteration 2 in the forward pass direction.

Table 9: Results of Iteration 2 Forwards Pass
56.43 5595.25 0
19.66 14984.75 0
30.24 11204.75 0
74.57 16800 16244.75

WIN - -

Direction: Backward Pass
Table 10 shows the results of iteration 2 in the backwards pass direction. This information can be used to
generate new approximations.
Table 10: Results of Iteration 2 Backward Pass.
t k AC FCF s
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46200
31500
28140
31920
28560
25200
19605
16245
12885

WIN R OO N WN

0
0
0
0
0
0
0
0

0

16800 28018.98
10080 29684.75
16800 16244.75

2777.78
277.78
277.78
277.78
277.78
277.78
277.78
277.78
277.78
111.11
277.78
277.78

Using the results in Table 10, three new cuts are calculated for the second stage (equation (26)) and one

more for the first stage (equation (27)).
@y1 = 35280 — 111.11 - (v,, — 19.66)
Ay = 28560 — 277.78 - (v, — 30.24)

ay3 > 16244.75 — 277.78 - (vy3 — 74.57)
a, = 39209.49 — 555.56 - (v; — 56.43)

The upper and lower bounds are higher than the desired gap as indicated below.
Zyupper = 46620
Ziower = 5595.25

e=88%>1%

ITERATION 3

Equations (26) and (27) are added to the sub-problems of the forward pass of iteration 3.

For stage 1:

For stage 2:

G_thl + G_h1 + USEl =90
v, = 3024 — 0.6048 - G_h,

a; =0

a, > 36680 — 1820.99 - (v; — 36.29)
a; > 39209.49 — 555.56 - (v, —

0 G_hy
0 G_th|

< x=
o|=* USE1
0

Zp1(vi_1) = mm[G thy, + 10USE,; + a21

100
100

100

56.43)

G_thys + G_hyq + USE,, = 160
v2‘1 = vl,l + u- A2,1 - 0604’8 " G_h2‘1

0.’2’1 >0

@y, = 72800 —3703.70 - (v, — 0)
@y1 =35280—111.11- (v, — 19.66)
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0 G_hy 100
0 o, [G-thas| _|100
0 USE, 160
0 v, 100

Zy,(vi_1) = min[G_th,, + 10USE,, + ay,|
G_thyo + G_hy, + USE,, = 160
Voo =g+ U Ay, —0.6048-G_h,,
a, =0

@y, > 58240 — 240741 (v,, — 6.05)
@y, = 28560 — 277.78 + (v,, — 30.24)

0 G_hy, 100

0| _ . — |G-thaz lwo‘

0 USEZ 160

0 100

Zy3(vi_1) = min[G_thy 3 + 10USE, 3 + ay 3]
G_thys + G_hy 5+ USE,5 = 160
Vy3 =V + U-Ays —0.6048 G_hy 5
a3 =0
ay3 > 28560 — 277.78 - (v,3 — 30.24)
ay3 = 16244.75 — 277.78 - (vy3 — 74.57)
0 G_hy;3 100
of .. _|G thml lwo
0|~ USE; 160
0 100

It can be observed that at the end of first stage, water has a higher opportunity cost in the future stages, so
at the end of the first stage the solution stores a higher volume of water, as shown in Table 11.

Table 11: Results of Iteration 3 Forward Pass.
90.72 15120 20160
36.29 10080 57120
60.48 10080 36960
84.67 10080 36960

WIN - -

Direction: Backward Pass
Table 12 shows the results of iteration 3 in the backward pass direction.

Table 12: Results of Iteration 3 Backward Pass.
K AC FCF ok

3 1 30240 0 277.78
2 26880 0 277.78
3 23520 0 277.78
4 23520 0 277.78
5 20160 0 277.78
6 16800 0 277.78
7 16800 0 277.78
8 13440 0 277.78
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10080 0 277.78
10080 36960 0

10080 20160 277.78
14337.78 9182.22 | 277.78

W N = O

There is information to calculate three more approximations for the second stage FCF (equation (28)) and

one more for the first stage (equation (29)).
a1 = 26880 — 277.78 - (v, — 36.29)
@y = 20160 — 277.78 - (v,, — 60.48)
A3 = 13440 — 277.78 - (v, 3 — 84.67)
a; = 33600 — 185.18 - (v; — 90.72)

Convergence
The upper and lower bounds are higher than the desired gap as indicated below.

Zupper = 45360

Ziower = 35280
£=2222%> 1%

ITERATION 4

Direction: Forward Pass
Equations (15) and (16) are added to the sub-problems of the forward pass of iteration 4.
For stage 1:
Z,(0) = min|[G_thy + 10USE; + a4]
G_thy +G_hy + USE; =90
v; = 30.24 — 0.6048 - G_h,
a; =0
ay = 36680 — 1820.99 - (v; — 36.29)
ay = 39209.49 — 555.56 - (v; — 56.43)
a, = 33600 — 185.18 - (v; — 90.72)
0 G_hy 100
0 _|G th1 100
o|=%= USE1
0 100
For stage 2:
Z,1(v{_1) = min[G_th, 1 + 10USE, 1 + ay,|
G_thy,, +G_h,, + USE;; = 160
V1 =11+ u-4;, —0.6048-G_hy,
a; =0
@y, = 72800 — 3703.70 - (v, — 0)
@y1 =35280—111.11- (v, — 19.66)
@y = 26880 — 277.78 - (v, — 36.29)
0 G_hay 100
of o _ G_thy, 1100‘
0|~ USE2 ~ 1160
0 100

ZZ,Z(UZ—I) = min[G_ch‘Z + 10USE2’2 + 0.’2‘2]
G_thzyz + G_hz‘z + USEZ,Z =160
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Vyp =1+ U Ay —0.6048 - G_h,,
ay, =0

@y, > 58240 — 240741 (v,, — 6.05)

@z, = 28560 — 277.78 - (v, — 30.24)

@y, = 20160 — 277.78 - (v,, — 60.48)

0 G_h;, 100
0| o, G _thy, |00
0 USEZ 160
0

100

Z,3(vi_1) = min[G_th, 5 + 10USE, 5 + ay 3]
G_thys + G_hy 5+ USE,5 = 160
Va3 =V11+ urAz3—0.6048-G_hy3
a3 =0
@y3 = 28560 — 277.78 - (v,3 — 30.24)
Ay3 = 1624475 — 277.78 - (v53 — 74.57)
ay3 = 13440 — 277.78 - (v, 3 — 84.67)

G_hy3 100
H < G thzgl Iwo‘
ol = USE3 = 1160
0 100

Table 13 shows the results of iteration 4 in the forward pass direction.

Table 13: Results of iteration 4 Forwards Pass.

t  k v} AC FCF

1 1 54.43 5040 40320
2 1 24.19 16800 30240
2 24.19 10080 30240
3 72.58 16800 16800

Direction: Backward Pass
Table 14 shows the results of iteration 4 in the backward pass direction.

Table 14: Results of iteration 3 Backward Pass.

t k AC FCF Tk

3 1 33600 0 277.78
2 30240 0 277.78
3 26880 0 277.78
4 33600 0 277.78
5 30240 0 277.78
6 26880 0 277.78
7 20160 0 277.78
8 16800 0 277.78
9 13440 0 277.78

2 1 16800 30240 1111.11
2 10080 30240 277.78
3 16800 16800 277.78
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Convergence
The upper and lower bounds are identical as indicated below, so the process is concluded and this iteration
results are the optimal.
Zypper = 45360
Ziower = 45360
e=0<1%

The expected cost of the problem is $45,360. Figure 31 show the optimal end volumes for each sub-problem.

v}, = 60.48
v}, = 60.48
v}, = 60.48
v}, — 60.48
v} = 60.48
v; . = 60.48
v}, =60.48
v} = 60.48
v} 4 — 6048

t=1 f=3 | t=3 |

Figure 31. Optimum volumes per sub-problem.
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6.3 Model solution using Hanging Branches

The equivalent tree using hanging branches method is showed below:

= v3, = 60.48
Full Branches . A3_1 =40 . 3,1
Hanging Branches . Vo A3 y = 50

@ v;, =6048

vis = 60.48
vis = 60.48
vy = 60.48
;5 = 60.48
@ —=w 3
v = 60.48
v, = 60.48
vig = 60.48
v3 = 60.48

b=1 | =2 | t=3 |

Figure 32: Multi-stage tree with full and hanging branches representation

The problem formulated as hanging branches formulation is the scenario — wise decomposition + non
anticipativity constraint version of equation 17. The formulation can be summarized as follows:

9
1
Z = min [§Z[G_th1'k + 10 USEy ; + G_thy + 10 - USEy . + G_thyy + 10 - USE3 ]
k=1

G_hyx + G_thy, + USEy, = 90
G_hyy + G_thyy + USE,, = 160
G_h3,k + G_th3'k + USE3'k =110
Uik = Yok +30.24 — 0.6048 - Gy, ., Yk =1..9
Uy = Vix +6.048 — 0.6048 - G_hy,, Yk =1...3
Uy = Vix +30.24 — 0.6048 G_hy,, Vk = 4 ...6
Uy = Vi g + 54432 — 0.6048 - G_hyy, Vk =7 .9
Vs = Vpy + 48384 — 1.2096 G_hyy, Vk = 1,4,7
Vs = Vay + 6048 — 1.2096 * G_hy, Yk = 2,5,8
Vs = Vay +72.576 — 1.2096  G_hy ;, Vk = 3,6,9
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0 G_thek] 100
0 G_he 100
Of o [USEri| | 90
0 USE; 160
ol {5 [0l
0 v | 1100
V11 = V12 = V13 =" ="V19

V21 = V22 = V33
V24 = V25 = Vg
V2,7 = V28 = V29

To represent the example in PLEXOS is needed the following objects:

e 2 generators @system
1 4 | Electric
° storage 4 | Generators
e 1region QHydro
e 1variable OThermal
4 | Storages
e 1global Olake
4 | Transmission
4 |l Regions
~ @Reg
4 |l Data
4 [ Variables
‘. Inflow
4 | Globals
@rcr
Figure 33: Objects tree representing the example
4 Eﬂ‘_l’wperﬁes Property Value Units Band Date From DateTo Timeslice Action Expression
4 | iables
< SmpinoMees - 1=
g“s-émprmg Method Profile 50 - 1 1/01/2006 =
I @Distribution Type Profile 10 - 1 8/01/2016 5
v | @erofile
- 40 - 1 15/01/2016 =
W @Min Value ke b
Profile 50 - 2 1/01/2016 =
I%I.Erwf Std Dev. Profile 10 - 2 B/01/2016 =
‘Am Snreeon Profile 50 - 2 15/01/2016 =
Profile 50 - 3 1/012016 =
Profile 10 - 3 B/01/2016 =
Profile &0 - 3 15/01/2016 o
Profile 50 - 4 1/01/2016 =
Profile 50 - 4 B8/01/2016 =
Profile 40 - 4 15/01/2016 =
Profile 50 - 5 1/01/2016 =
Profile 50 - 5 Bf01/2016 =
Profile 50 - 5 15/01/2016 =
Profile 50 - 6 1/0172016 B

Figure 34: Variable profile to represent uncertainty in PLEXOS
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Figure 35: Global class configuration

Property Value Data File Units Band Date From Date To Timeslice Action Expression Scenario Memo
Tree Stage Count 3 = 1 =
Tree Period Type interval = 1 =
Tree Stages Position 168 C 1 =
Tree Stages Position 336 = 2 =
Tree Stages Leaves 3 & 1 =
Tree Stages Leaves 1 - 2 =
Tree Stages Hanging Branches 0 = 1 =
Tree Stages Hanging Branches 2 = 2 =

Once the problem is solved in MT, the objective function is 45,360 which is the same objective function value
found using SDDP method in section 6.2.

MT Schedule Completed. Time: @0:00:02.1

AR E AR RELaXAE T 0N tesermootionsrs ot mosetiosbsetioysmeset s batolasie oV ey sue a¥es o oMo ST oy S8 elios PR L tioL 7o e o ST VR e O SN e 4.5360000000e+004
ENGEASTDITAIES Sy e sererreysasnee seumuseneienaneones s oo Tas e e e S Ee oo e e e e NN ST oS N e e S e e e BN S Yo Ko oGS 4]

Figure 36: Objective function value in log file

7 Conclusions

The approach to solve hydro-thermal coordination optimization problems is to use stochastic
optimization techniques to ensure the user minimizes the cost or alternatively maximizes the
benefits of a hydro-thermal portfolio under uncertainty. A stochastic problem can be classified in:

a) Two-stage or Multi-stages.
b) Recursive or non-recursive.

The current trend in the industry to solve a medium - long term stochastic hydro problems is
formulating a multi-stage stochastic programming and recursive approach.

The formulation of a multi-stage stochastic problem has dimensionality issues even when a few
number of stages are added so simplifications on the resultant tree have to be made to produce a

problem solvable by today computers.

An equivalent SDDP tree is possible to formulate using scenario-wise decomposition and non-
anticipativity constraints. This problem is possible to solve using today’s computers.

Hanging Branches method in PLEXOS looks promising to replace SDDP.
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9 Annexes
9.1 Annex A: SDDP algorithm fundamentals

SDDP algorithm deterministic approach

Benders cuts take advantage of the following mathematical structure:
MinCy - x1 + Cy " x,
Subject to
A xy = by
Ei x4+ A4, x, 2 by

This can be interpreted as a two-stage sequential decisions process. In the first stage we decide on a trial
feasible value for X1 and given the trial value we find the optimal solution of the second stage function:
a = MinC, - x,
Ay xy 2 by —E; - xq

X1 is known value in the second stage problem, and goes to the right hand side of the constraints. The
objective then is to minimize the sum of the first — stage and second stage cost functions:
MinC; " x1 + «
Subject to
A xy = b

Where C1X1 represents the “actual cost” and a represents the “future cost” of decision X1. The future cost
function translates the second stage costs as a function of the first stage decisions X1. If this function is
available the problem can be solved as a one stage problem and then simplify the computation time.

The future cost function is approximated by an analytical function rather than a set of discrete values using
a piecewise linear function. The structure of the future cost function can be characterized by taking the dual
of the second stage problem:
a= Max(n- (b, — E; -xl))
Subject to
w4, <G,

1 is the row vector of dual variables. From LP theory, optimal solution of dual and the original problem
coincide. Since X1 is in the objective function and not in the right hand side of the constraint set as in the
original problem, the set of possible solutions can be characterized before knowing the decision X1.

The problem can be solved by enumeration:
a(X,) = Max{ni(Bz —E X)), for all i}
This is equivalent to rewrite the problem as:

Mina
a 2 nl(bz - E1 " xl)

a 2 T[U(bz - E1 " xl)

The problem can be rewritten as:
MinCy " x; +
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Subject to

Al " X1 > b1
a 2 T[l(bz _E1 'xl)

a 2 T[U(bz - E1 " xl)

We can rewrite the obtained cuts:

a = m' (b, — Ey - x1)(%)
If w*is optimal solution of:

a = Min(c, - x5)
Az'xz ZbZ_El'xl

Assuming dual and primal has the same value we can write:
w'=n*(by —E{-x]) >n"by=w"+1"-E;-x]

Substituting previous expression in cuts formulation (*), we can get an alternative expression for FCF
azw +n"E - (x] —xq)
Hydro problems share same mathematical structure described above where the link between stages is the
hydro balance equation:

EndVolume(2) = EndVolume(1) + Inflow — Release
SDDP algorithm stochastic approach:

Stochastic problems can be written as:

MinCl'xl+P1'Cz'X21+P2'C2'X22+"'+Pm'C2'X2m
Subject to

Ay xq > by

El'.xl +A2'X21 2b21
E1 *Xq + AZ * X2 > b22

E1 . x1 + A2 * me 2 me

Were p1 and p2 are the probabilities to obtain b1 and b2. The second stage problem can be written as follow
Z = minp;1Cyxz1 + P2CaXa
Subject to
Azxzy

2 b21 - E‘lxi=
2 b21 - Ele

Azxap
This problem can be decomposed into two independent problems:

min c;x54
Subject to

*
Ayxyy = by — Eqxq

min c;Xx5,
Subject to

Ayxyy 2 byy — Eyxy
The original problem can be rewritten as:
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z = mincyxq + (%)
Subject to
A1x1 > b1

The function & represents expected value of future cost function
@y (x1) = pray1(x1) + P22 (x1)
aq1(x1) = mincyx,
Subject to
Ayxy 2 by — Eyxy »my
aq12(x1) = mincyx,
Subject to
Ayxy Z byy — Eyxy >y

The benders cuts associated to this problem are:
P17y (bay — Exxy) + pama(byy —Exxy) < @

That can be rewritten as:
p1(Wf + m By (x1 — x1)) + PZ(WE + myE (x] — x1)) sa
Grouping the above equation we obtain the cut expression for stochastic problems:

W+ TE (xf — X)) < @
W" =piwi +pw; e T =pimy + Pem;

CONFIDENTIAL — STRICTLY FOR ENERGY EXEMPLAR CLIENTS ONLY ~ Page 53 of 53



