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I: Introduction 

Many countries worldwide have initiated the privatisation of electricity assets, the restructuring 

of electricity industries, and the implementation of the technical, legal, and institutional 

structures to support the development of electricity markets. The objective of these activities has 

been to create a competitive environment for trade in electricity that ultimately produces net 

benefits to society. 

The realisation of these potential benefits, however, depends on the unfettered development and 

efficient operation of markets, which includes (among other factors) limiting the opportunities for 

participants to exercise market power. Although the definition and measurement of market power 

are subject to persistent debate, a participant, in general, possesses market power when it is able 

to determine unilaterally key components of its market conduct without any constraints. The 

actual exercise of market power typically involves a firm withholding some of its output and 

charging prices above marginal cost for a sustained period of time. Although this characterisation 

is general and not without qualification, a more detailed discussion of market power is beyond the 

scope of this article at present. 

The exercise of market power creates productive and allocative inefficiencies, including i) too little 

production relative to the competitive level, ii) too little consumption relative to the competitive 

level, and iii) higher prices relative to competitive levels. Market power may also create dynamic 

inefficiencies if it distorts price signals for new investment. As a result, the effects of market 

power may erode the benefits that would otherwise arise from a fully competitive market. In 

addition, the exercise of market power leads to a transfer of inframarginal revenues from 

consumers to producers (but this transfer is not an inefficiency itself). 

In electricity markets, the physical properties of electricity, economic aspects of electricity supply 

and demand, and market design/institutional features may create opportunities for the exercise of 

market power by participants. Such aspects include, but are not limited to, the: 
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• market structure - number of generation companies in the market and the degree of 

vertical integration of these firms; 

• supply ‘tightness’ relative to demand in certain periods, i.e. the amount of residual demand 

facing firms in the market in a given period; 

• elements of market design, including the 

 design of the market-clearing mechanism (centralised auction versus bilateral trade), 

 transmission pricing methodology, and 

 operational rules and procedures; 

• topology of the transmission network, including the location of generation and loads, and 

the potential for transmission congestion; and the 

• prevailing regulatory structure and. policies. 

Recent empirical studies provide some evidence that generators have exercised market power in 

both the California and United Kingdom (U.K.) power markets [5,20]. These studies, in 

combination with the physical, economic, and design aspects of electricity markets, have 

continued to motivate market power research. The economics and operations research fields 

feature a wide range of approaches to analysing the exercise of market power in electricity 

markets. These approaches include equilibrium models of imperfect competition, simulation 

studies, and laboratory experiments with artificial agents. 

The most prevalent approach to date is the equilibrium model of imperfect competition. This 

approach is promising for several reasons. Analysis of market power seeks to answer basic 

questions, ranging from how a firm exercises market power and under what conditions to how 

market power impacts equilibrium quantities, prices, and social welfare in an economy. First, 

attempting to answer these questions requires accurately characterising the relevant market and 

its institutional features. Market characteristics include, for example, the number of firms in the 

relevant industry and their cost structures, the degree of product differentiation, and the nature 

of interaction among these firms. Institutional features include, for example, the legal and 

regulatory frameworks that determine the organisation and operation of the market. Since 

knowledge of these specific factors is essential to establishing a context for answering the 

questions posed, it is obviously critical to represent these features in the analytical approach. 

Computable equilibrium models, in general, offer sufficient flexibility for representing these 

market and institutional features. 
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Second, answering these questions always involves assessing the potential impact of market power 

on economic variables, such as prices and quantities. This assessment, at least implicitly, requires 

a comparison of ex post observations of real world market prices and quantities to the comparable 

values of these variables that the perfectly competitive model predicts. Although perfect 

competition may characterise few real world markets, its importance primarily relates to serving 

as a benchmark. The story does not end at this point, however, since the observed data may 

depart significantly from the competitive benchmark values due to market and institutional 

features that are independent from the exercise of market power. Computable equilibrium models 

enable the analyst to build a model that includes these features to the required level of detail, 

such that deviations from the benchmark are captured by parameters in the model. At a basic 

level, this approach is consistent with the view of an equilibrium model of imperfect competition 

as a model of perfect competition distorted by quantity restrictions and price mark-ups above 

marginal cost [13]. 

In applying these models, it is helpful to understand the relationship between imperfectly 

competitive markets and other market types. In general, it is possible to categorise markets into 

different classes, depending on the intensity of competition that, in principle, prevails within 

them. Figure 1 illustrates the relationship between the level of competition and market type. 

Competition 
Intense

Competition 
Non-existent

Level of Competition

Imperfect Competition

Perfect Competition Monopoly

 

Figure 1: The Degree of Competition in Markets 
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At one extreme is perfect competition, characterised by i) product homogeneity, ii) full resource 

mobility, iii) perfect information, and iv) price-taking behaviour by participants. Price-taking 

behaviour implies that each individual producer (buyer) in a market, when choosing its 

production (purchases), assumes that its choice will have no impact on the aggregate demand-

supply balance and consequently, no impact on the market price. (Note that a competitive 

producer, although a ‘price-taker’, is at the same time a ‘price-adjuster’, in the sense that it 

responds to excess demand or supply by increasing or decreasing (respectively) its price.) A 

perfectly competitive firm’s marginal revenue, therefore, is the market price, and profit-

maximising behaviour results in producing the output level at which price equals marginal cost. 

In this case, the actions of other firms are largely irrelevant to an individual firm’s profit 

maximisation decision. Markets for agricultural commodities probably are the best approximation 

to perfect competition. 

At the opposite extreme, a monopoly consists of a single producer that faces the entire market 

demand for a product. Entry into this market type is difficult due to barriers that impede the 

entry of new competitors, such as economies of scale, technology patents, or the monopolist’s 

ability to control access to essential inputs to production. The monopolist maximises its profit by 

producing the output level at which its marginal revenue equals marginal cost and charging a 

price above the socially optimal price, which is marginal cost. The mark-up, i.e. the ratio between 

its profit margin (price less marginal cost) and the price, is inversely proportional to the elasticity 

of market demand. 

Imperfectly competitive markets lie between these two extremes and are divisible into two basic 

market structures, monopolistic competition and oligopoly. Monopolistically competitive markets 

are characterised by many producers, differentiated products, and free entry and exit. Oligopoly 

markets are characterised by a limited number of producers, homogeneous or differentiated 

products, barriers to entry, and strategic interdependence among firms. The focus in this article is 

on the oligopoly market structure since electricity production tends to possess scale economies, 

which leads to barriers to entry and a limited number of competing firms. 

A central feature of oligopoly is that a few large firms in the market dominate production and are 

able to exercise market power by altering their output and/or pricing decisions to their 

advantage. Due to barriers to entry, some or all of these firms may earn substantial, positive 

economic profits over a sustained period of time. Since the number of firms is limited, each 

individual firm must consider its own set of market actions, e.g. output and pricing decisions, and 

the impact of these actions on its rivals. Further, each individual firm must account for possible 

reactions of rivals to its actions and the fact that its rivals will make a similar assessment of their 

own. 
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A prominent issue in the industrial organisation literature, therefore, is how an individual firm 

accounts for, and responds to, its rivals’ actions in an imperfectly competitive market. In 

examining this issue, a complementary question that naturally arises is given a theory about an 

individual firm’s behaviour toward its rivals and their possible reactions, how should such 

behaviour be modelled from an analytical perspective. One plausible answer to this question 

begins with the assumption that a ‘rational’ firm acts to maximise its profit. This assumption is 

known as the profit maximisation hypothesis and serves as a central postulate for economic 

theory. (Some theories of firm behaviour offer alternative hypotheses, but this subject is beyond 

the current scope of this article – see Tirole [19] for a basic overview of the relevant literature.) 

It follows from the profit maximisation hypothesis that an individual firm’s profit maximisation 

decision should encapsulate some assumption regarding how its rivals will react to its 

output/pricing decisions. As a result, the primary component of models of imperfect competition 

is a specification of how a firm assumes that its rivals (possibly including potential entrants to the 

market) react to its decisions. The dominant approach in the economics literature for examining 

this strategic interaction among firms in an imperfectly competitive industry is game theory. 
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II: Basic Game Theory Concepts 

This section introduces basic concepts in game theory that serve as the building blocks for 

equilibrium models of imperfect competition. For a comprehensive discussion of game theory 

concepts applied to economics, see Gibbons [11] and for a more advanced treatment, see 

Fudenberg and Tirole [10]. 

The examples in this section are adapted from [11]. 

II.A: The Strategic Form 

Game theory is the study of multi-person or multi-firm decision-making problems. In the field of 

industrial organisation in economics, game theory is used extensively to study auction behaviour, 

bargaining, principal-agent relationships, product differentiation, and strategic behaviour by 

firms. 

The strategic (or normal) form representation of a game includes three components: 

• the set of players, , in the game, which is assumed finite; {1,..., }i ∈ I

i

• the pure strategy space, Si, which contains the individual strategies available to player i, 

, where sis S∈ i is an arbitrary strategy; and 

• the pay-off function, ui(s), which gives player i’s von Neumann-Morgenstern utility for each 

profile s = (s1,…,sI) of strategies that could be played in the game, with S  representing 

the space of profiles (s S∈ ). 

In a game, a player often takes the form of a rational individual or a profit-maximising firm. Each 

player’s objective is not to ‘defeat’ the other players (denoted –i), i.e. its rivals, but to maximise 

its pay-off function from playing the game. Playing the game to achieve this objective may 

‘benefit’ or ‘harm’ other players in the game. 

In a static game, a pure strategy is simply an action, and a player’s pure strategy space is a set of 

possible actions. For example, Player 1 in a game may possess the (pure) strategy space, S1 = 

{Attack, Retreat}, and these are the only possible actions from which the player can choose a 

strategy in the game. In a dynamic (repeated) game, a strategy is a complete plan of action that 

specifies a possible action for the player for each contingency in the game for which the player 

may be compelled to play. In economics, the most common strategy variables are quantity and 

price, while in political science, the strategy variable may represent votes. Further, a strategy 

may either be a pure or mixed strategy. For purpose of exposition, the remainder of this article 

focuses on the play of pure strategies, although mixed strategies are possible equilibria in many 

games (see the discussion in section II.B for a basic overview of mixed strategies). 

The pay-off for a player may be a measure of personal utility or income, and the pay-off for a 

firm may be profit, reputation, etc. 
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The following example illustrates the use of the notation defined previously. Assume that the 

strategic form of a game consists of two players (i =1,2), each with two possible strategies. Player 

1 can choose to play ‘Up’ or ‘Down’, while Player 2 can choose to play ‘Left’ or ‘Right’. The 

strategy spaces for the players, therefore, are: S1 = {Up, Down}, S2 = {Left, Right}. One possible 

profile of strategies is that Player 1 plays ‘Up’, and Player 2 plays ‘Left’, i.e. s = (Up, Left). If 

Player 1 receives a pay-off of 1 and Player 2 receives a pay-off of 0 from the play of this profile of 

strategies then (u1(s), u2(s)) = (1,0). Finally, the space of profiles is S  = {(Up, Left); (Up, 

Right); (Down, Left); (Down, Right)}. 

Given the strategic form of a game, the next section introduces the simplest type of game and 

proposes two different solution concepts for obtaining an outcome from the play of such games. 

II.B: Basic Solution Concepts 

A basic and useful game is a static game of complete information. These games have a simple but 

powerful form: 

• the structure of the game is common knowledge - all players know the strategic form of the 

game, know that their opponents know it, know that their opponents know that they know 

it, etc., ad infinitum - consequently, each player has common knowledge of the other 

players, their strategies, and their pay-off function (for a formal definition of common 

knowledge see [2]); 

• the players simultaneously choose their strategies – players do not necessarily act 

simultaneously, but each player chooses its strategy without knowing the strategy choice of 

the other players; and 

• after playing the game, each player receives a pay-off that depends on the profile of 

strategies played. 

The following example of a static game of complete information builds on the example given 

previously. Recall that each player has two strategies in its strategy space: S1 = {Up, Down}, S2 

= {Left, Right}. These strategies and the associated pay-offs are illustrated with the ‘bi-matrix’ 

in Figure 2. Each pay-off cell in the matrix corresponds to the play of a particular profile of the 

players’ strategies and contains a pair of numbers that represents the pay-offs to the players. The 

first (second) listed number gives the pay-off to Player 1 (2) that is associated with that 

particular profile of strategies. For example, if Player 1 plays ‘Up’ and Player 2 plays ‘Left’, then 

the pay-offs are 1 to Player 1 and 0 to Player 2. (The pay-offs typically are either measured in 

dollars or utility, but they could represent any desired metric.) 

  Player 2 

  Left Right 
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Up 1,0 1,2  

Player 1 
Down 0,3 0,1 

Figure 2: Example – Iterated Elimination of Strictly Dominated Strategies 

 

The relevant issue is how to obtain a solution to this game-theoretic problem, i.e. what profile of 

players’ strategies represents a ‘likely’ outcome of this game. A useful starting point is the idea 

that rational players will not play ‘strictly dominated’ strategies. In this game, Player 1 will never 

play ‘Down’: if Player 2 plays ‘Left’ then Player 1 plays ‘Up’ since 1 > 0, and if Player 2 plays 

‘Right’ then Player 1 again plays ‘Up’ since 1 > 0. Regardless of the choice by Player 2, Player 1 

always maximises its pay-off by playing ‘Up’; ‘Down’, therefore, is a strictly dominated strategy. 

Given that Player 2 correctly anticipates that a rational Player 1 will never play ‘Down’, Player 2 

knows that Player 1 will always choose ‘Up’. Player 2 correctly anticipates this choice and 

chooses ‘Right’ since 2 > 0. As a result, the solution of the game is (Up, Right), obtained by the 

iterated elimination of strictly dominated strategies. For games in which players have more 

strategies, there may be successive ‘rounds’ of eliminating strictly dominated strategies (hence, 

the ‘iterated’ in the solution name). 

Although the concept that rational players do not play strictly dominated strategies is sound, it 

suffers from two major weaknesses. First, each step of the game assumes that all players are 

rational, which in aggregate, i.e. across all steps, results in the assumption of common knowledge. 

The second weakness is that the application of this solution method does not produce a solution 

for all games. If all strategies in a game survive the iterated elimination of strictly dominated 

strategies then the method predicts nothing about the play of the game. 
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An equilibrium concept that produces much stronger predictions about the play across a wide 

range of games is Nash equilibrium [17]. As a thought experiment, an excellent motivation for 

Nash equilibrium as a solution concept is that if game theory provides a unique prediction about 

the strategy that each player will choose, then in order for this prediction to be correct, it is 

necessary that each player is willing to choose the strategy that the theory predicts. In other 

terms, if the play of a game is defined by a pact among all of the players then the strategies that 

the pact prescribes to the players must define a Nash equilibrium; otherwise, at least one player 

will want to deviate from the pact, and it will not be binding. 

More specifically, a strategy is a Nash equilibrium for a player if that player cannot increase its 

own pay-off by undertaking any strategy other than its equilibrium strategy, given the strategy 

choices of its rivals. In a Nash equilibrium, each player will decrease its pay-off if it deviates from 

its Nash equilibrium strategy, assuming all other players continue to play their existing strategies. 

As a result, a Nash equilibrium is a ‘best response’, in the sense that no player has an incentive to 

deviate from its strategy choice, given all other players’ strategy choices. Definition 1 gives a 

formal definition of Nash equilibrium. 

Definition 1: In the n-player strategic form game, G = {S1,…,Sn; u1,…,un}, the strategies 

( ) are a Nash equilibrium if, for each player i,  is player i’s best response to the 

strategies specified for the other (n-1) players, ( ), such that 

, for every feasible strategy . 

*
1 ,..., ns s*

*
n

n

*
is

* * *
1 1 1,..., , ,...i is s s s− +

* * * * * * * * *
1 1 1 1 1 1( ,..., , , ,..., ) ( ,..., , , ,..., )i i i i n i i i iu s s s s s u s s s s s− + − +≥ i is S∈

Nash’s Theorem is proved through the use of a fixed-point theorem. As an example, suppose that 

f(x) is a continuous function with domain [0,1] and range [0,1]. Brouwer’s Fixed-point Theorem 

ensures that at least one fixed-point exists, i.e. there exists at least one value x* in [0,1] such that 

x* = f(x*). The use of a fixed-point theorem to prove Nash’s Theorem requires two steps: i) 

showing that any fixed-point of a certain correspondence is a Nash equilibrium, and ii) applying 

Kakutani’s Fixed-point Theorem to show that this correspondence must have a fixed-point. 

Kakutani’s Fixed-point Theorem is the relevant fixed-point theorem because it generalises 

Brouwer’s Fixed-point Theorem to allow for well-behaved correspondences as well as functions. 

Although demonstrating these two steps is beyond the scope of this article, [10] contains the 

relevant proofs. 

Figure 3 illustrates the concept of Nash equilibrium through a simple game. 
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  Player 2 

  Left Middle Right 

Up 1,0 1,2 0,1  

Player 1 
Down 0,3 0,1 2,0 

Figure 3: Example - Game with a Unique Nash Equilibrium 

 

The solution to this game is determined by finding the profile(s) of strategies such that each 

player’s strategy is a best response to the other player’s predicted strategy. For example, consider 

the profile, (Up, Left). Given Player 1 plays ‘Up’, Player 2’s best response is to play ‘Middle’ 

since 2 > 0. Consequently, ‘Left’ is not a best response for Player 2, and (Up, Left) cannot be a 

Nash equilibrium since Player 2 would deviate from it. Now consider the profile, (Down, Left). 

Given Player 1 plays ‘Down’, Player 2’s best response is to play ‘Left’ since 3 > 1 and 3 > 0. 

Consequently, Player 2 would not want to deviate. Player 1, however, would deviate from it: 

given Player 2 plays ‘Left’, Player 1’s best response is to play ‘Up’ since 1 > 0. (Down, Left), 

therefore, is not a Nash equilibrium either. The same analysis can be applied to the other cells, in 

turn, and the unique Nash equilibrium is (Up, Middle): each player’s strategy choice is a best 

response. 

The following two propositions define the relationship between Nash equilibrium and the iterated 

elimination of strictly dominated strategies: 

Proposition 1: In the n-player strategic form game, G = {S1,…,Sn; u1,…,un}, if iterated 

elimination of strictly dominated strategies eliminates all but the strategies, ( ), then these 

strategies are the unique Nash equilibrium of the game. 

*
1 ,..., ns s*

*

By Proposition 1, the equilibrium, (Up, Right), in Figure 2, obtained through the iterated 

elimination of strictly dominated strategies, is a Nash equilibrium. 

Proposition 2: In the n-player strategic form game, G = {S1,…,Sn; u1,…,un}, if the strategies, 

( ), are a Nash equilibrium then they survive iterated elimination of strictly dominated 

strategies. 

*
1 ,..., ns s
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In Figure 3, it was shown previously that (Up, Middle) is the unique Nash equilibrium. Consider 

a solution to this game using the iterated elimination of strictly dominated strategies. For Player 

2, the strategy, ‘Right’, is strictly dominated by ‘Middle’, i.e. if Player 1 plays ‘Up’ then 2 > 1, 

and if Player 1 plays ‘Down’ then 1 > 0, so Player 2 never plays ‘Right’. This round of iterated 

elimination, therefore, eliminates the strategy, ‘Right’, for Player 2, reducing the game in Figure 3 

to the exact game in Figure 2. As shown previously, the game in Figure 2 is solvable by the 

iterated elimination of strictly dominated strategies, and the equilibrium is (Up, Middle). 

Consequently, this Nash equilibrium survives the iterated elimination of strictly dominated 

strategies, consistent with Proposition 2. 

II.C. Mixed Strategies 

A player’s pure strategy is actually a special case of a mixed strategy. More specifically, assume 

that player i has K pure strategies, . A mixed strategy for player i is a 

probability distribution, , where �

1{ ,..., }i i iKS s s=

1( ,..., )i i iKσ σ σ= ik(sik) is the probability that player i will play 

strategy sik, for k = 1,…,K, such that 0  for k = 1,…,K and . In a 

mixed strategy, each player’s randomisation is statistically independent from the randomisations 

of its rivals, and the pay-offs to players associated with a specific profile of mixed strategies are 

the expected values of the corresponding pure strategy pay-offs. 

1ikσ≤ ≤ 1 ... 1i iKσ σ+ + =

Since �i represents an arbitrary mixed strategy for player i, let � represent a profile of mixed 

strategies of the players, and let � represent the space of mixed strategy profiles for the game. 

These assumptions and notation allow the formalisation of Definition 2. 

Definition 2: In the strategic form game, G = {S1,…,Sn; u1,…,un}, suppose . A 

mixed strategy for player i is a probability distribution, , such that 0 1  

for k = 1,…,K and . 

1{ ,..., }i i iKS s s=

1( ,..., )i i iKσ σ σ= ikσ≤ ≤

1 ... 1i iKσ σ+ + =

An important implication of Definition 2 is that the set of mixed strategies contains the pure 

strategies as degenerate probability distributions. The following example illustrates the notation in 

Definition 2 and this implication. 

In the game in Figure 3, the players’ pure strategy spaces are S1 = {Up, Down} and S2 = {Left, 

Middle, Right}. Assume now that Player 1 has the following mixed strategies: =(.5, .5), 

=(1, 0), =(0, 1). Player 2 has the mixed strategies: =(.3, .4, .3), =(1, 0, 0), 

=(0, 1, 0), =(0, 0, 1). Suppose a mixed strategy profile for the players is σ  = [(.5, 

.5); (.3, .4, .3)]. Player 1’s expected pay-off from this profile is: u

11σ

12σ 13σ 21σ 22σ

23σ 24σ ∈ Σ

1(�) = .5[(.3)(1) + (.4)(1) + 

(.3)(0)] + .5[(.3)(0) + (.4)(0) + (.3)(2)] = .65. 

II.D. Multiple Nash Equilibria 

A game may possess multiple Nash equilibria. Figure 4 illustrates this possibility. 
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  Player 2 

  Left Right 

Up 2,1 0,0  

Player 1 
Down 0,0 1,2 

Figure 4: Example - Game with Multiple Nash Equilibria 

 

In this game, both (Up, Left) and (Down, Right) are Nash equilibria. It is not clear, however, 

which of these equilibria would prevail as a solution to the game. As a result, game theory 

research has devoted significant attention to developing methods for identifying a ‘compelling’ 

equilibrium in games with multiple Nash equilibria. One approach for ‘filtering’ multiple 

equilibria is the theory of ‘focal points’ [18]. This theory proposes that in some real world 

situations, players may be able to coordinate on a single, or ‘focal’, equilibrium through 

information that is independent from the strategic form. For example, suppose two players are 

asked to simultaneously name an exact time of day (to the minute), with the understanding that 

if the times match, they both receive a large, positive pay-off. A choice of 12 midnight or 12 noon 

is focal, but a choice of 4:17 p.m. is probably not focal. The problem with the ‘focal point’ 

approach, however, is that the degree of ‘focalness’ of strategies may depend on the players’ past 

experiences and cultures. For example, a given player’s strategy choice of ‘Left’ or ‘Right’ in a 

particular game may depend on the direction of flow of traffic in the individual’s home country 

[10]. 
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II.E: Applications to Microeconomics 

The analysis in this section is based on Tirole [19]. 

II.E.1: Notation 

Throughout the remainder of this article, the following notation is relevant: 

qi output of firm i 

pi price of firm i 

q-i output of firm i’s rival 

p-i price of firm i’s rival 

iΠ  profit function of firm i 

Ri(sj) reaction function of firm i, a function of firm j’s strategy 

i
iΠ  first derivative wrt si of firm i’s profit function   ( , )/i

i j is s s∂Π ∂

i
iiΠ  second derivative wrt si of firm i’s profit function   2 ( , )/i

i j i is s s s∂ Π ∂ ∂

i
ijΠ  cross-partial derivative of firm i’s profit function   2 ( , )/i

i j i js s s s∂ Π ∂ ∂

In general, subscripts on the profit function denote partial derivatives with respect to si and sj, 

while superscripts denote the firm. Subscripts on strategies (e.g. quantities and prices) and 

reaction functions, however, always reference the firm. 

II.E.2: Reaction Functions 

Each firm in an oligopoly independently and simultaneously acts to maximise its profit in a static 

game of complete information. The firms (i, j) have profit function  and ( , )i
i js sΠ = ( , )j

i js sΠ =  

respectively. The first-order condition for a Nash equilibrium for firm i is: 

(1) , * *( , ) 0i
i i js sΠ =

where the * superscript denotes the optimal strategy choice, i.e. the choice that satisfies the Nash 

equilibrium condition. The second-order condition requires that si = s*
i gives a local maximum for 

the problem, i.e. 

(2) . * *( , ) 0i
ii i js sΠ ≤

If each firm’s profit function is strictly concave in its own strategy everywhere, i.e. 

(3) , ( , ) 0, ( , )i
ii i j i js s s sΠ < ∀

then the second-order condition is satisfied, and (1) is sufficient for a Nash equilibrium. Such an 

equilibrium is then defined by a system of two equations with two unknowns. 

Define Ri(sj) as the ‘best response’ of firm i to firm j’s choice of sj: 
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(4) . ( ( ), ) 0i
i i j jR s sΠ =

Ri(sj) = si is unique from the assumption of strict concavity and represents firm i’s reaction to sj. 

Further, a Nash equilibrium is a set of actions ( , such that: * *, )i js s

(5a)  and * *( )i is R s= j

(5b) * *( )j j is R s= . 

In an equilibrium defined by (5a-b), each firm’s strategy choice is a best response to its rival’s 

strategy choice. An important feature is the slope of a firm’s reaction function. Differentiating (4) 

to obtain the slope of firm i’s reaction function yields: 

(6) 
( ( ), )

( )
( ( ), )

i
ij i j ji

i j i
ii i j j

R s s
R s

R s s

Π
=

−Π
. 

Condition (6) implies that , where the reaction function has a positive 

slope if �

( ) ( )i
isign R sign= Πi

ij

i
ij > 0 and a negative slope if �i

ij < 0. In the former case, the goods are ‘strategic 

complements’ and in the latter case, they are ‘strategic substitutes’ (see [6] for a complete 

discussion). 

s1

s2

s1

s2

s*
1

s*
2

(i) Strategic substitutes 

R1

R2

0<Π i
ij

R1

R2

s*
2

s*
1

(ii) Strategic complements 0>Π i
ij
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Figure 5: Strategic Substitutes and Complements 

In economics, typically prices are strategic complements, and quantities are strategic substitutes. 

Note that Figure 5 simply illustrates the best response of each firm to a change in its rival’s 

strategy; however, points other than the Nash equilibrium are never actually observed since each 

firm chooses its action simultaneously, without observing the choice of its rival. 
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III: Selected Models of Imperfect Competition 

The three primary equilibrium models applied to examine market power are the Cournot, 

Bertrand, and Supply Function Equilibrium (SFE) models of imperfect competition. This section 

gives a basic description of these models and discusses their application in an electricity market 

context. 

The Bertrand and Cournot examples are adapted from [11]. 

III.A: Overview 

The common assumption of these models is that each individual, competing firm seeks to 

maximise its profit given: 

• demand conditions; 

• its cost structure; 

• any other relevant market conditions; and 

• an assumption about how rivals will respond to its decisions. 

The key difference among the models is the strategic variable that a firm chooses when competing 

against its rivals. The choice of strategy, e.g. price, quantity, or supply function, impacts the 

intensity of competition among the firms and the resulting equilibrium outcomes that the models 

predict. Figure 6 illustrates where the intensity of competition predicted by the basic formulation 

of each of the models places them along the competitive spectrum. 

Competition 
Intense

Competition 
Non-existent

Level of Competition

Imperfect Competition

Perfect Competition
Bertrand

MonopolyCournot
(n ‘small’)

SFE

 

Figure 6: Equilibrium Models and Predicted Degree of Competition 
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In the Bertrand model, for example, players believe that their rivals will not change their prices. 

In the traditional Bertrand model, with homogeneous products and identical unit production 

costs, the Nash equilibrium outcome is the competitive outcome in which the firms charge a price 

equal to marginal cost in equilibrium. In the Cournot model, each individual player assumes that 

its output affects price but that this decision does not affect the output of its rivals. As a result, 

the market price is higher than the purely competitive price but less than the monopoly price 

(assuming that the number of firms is not too large – see Appendix A). In the SFE model, firms 

bid entire supply functions, and the resulting price equilibria generally are between the Bertrand 

and Cournot outcomes. 

III.B: Bertrand 

The material in section III.B.1 is adapted from [19]. 

III.B.1: Description 

In the classic model of Bertrand duopoly, firms compete against each other using prices as 

strategy choices [3]. Three basic assumptions set the stage for the classic Bertrand duopoly model. 

First, competing firms produce homogeneous, i.e. identical, products, which are perfect 

substitutes in consumers’ utility functions. Consumers purchase from the firm with the lowest 

price. If the firms charge the same price, the model assumes that each firm faces a demand 

schedule that is equal to half of the market demand. Given two firms (i, j) and the market 

demand q = D(p), this assumption implies that the demand, D(pi), for the output of firm i is: 

(7) 

( ),

1
( , ) ( ),

2
0,

i
i j

i i j i i j

i j

D p
p p

D p p D p p p

p p

⎧⎪⎪ <⎪⎪⎪⎪= =⎨⎪⎪⎪ >⎪⎪⎪⎩

. 

Second, firms have identical unit production costs, , and always possess the capacity 

to supply sufficient output to satisfy demand, i.e. there are no capacity constraints on production. 

Third, firms ‘meet only once’ in the market and choose prices non-cooperatively and 

simultaneously. The non-cooperative nature of the game implies that competing firms act in their 

own self-interest, and the simultaneous aspect implies that each firm chooses its price without 

observing the choices of its rivals. In the Bertrand model of duopoly, each firm correctly 

anticipates its rival’s price choice, such that the price it chooses in equilibrium maximises its 

profit (given the price choice by its rival). 

( )iC q cq= i

c

The aggregate profit of the firms cannot exceed the monopoly profit (�m), and each firm can 

ensure itself a non-negative profit by charging a price above marginal cost; therefore, any 

reasonable outcome of the model must satisfy 0 � �1 + �2 � �m. Under the basic assumptions, 

the unique Nash equilibrium of the classic Bertrand model is a pair of prices, ( ), such that 

each firm charges the competitive price, i.e. . 

* *,i jp p
* *
i jp p= =
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To understand this result, consider the following cases: 

i)  * *
i jp p> > c

c

c

)

c

c

In this case, firm i’s demand is zero, and its profit is zero as a result. If firm i instead charges 

, where ε is positive and ‘small’, it acquires the entire market demand and makes a 

positive profit margin, . Consequently, in this case, is not a best response by firm i 

to firm j’s price. 

*
i jp p ε= −

*
jp ε− − *

ip

ii)  * *
i jp p= >

In this case, firm i’s profit is . If firm i, however, reduces its price slightly to 

, its profit is , which is higher for ‘small’ �. Again, is not a best 

response by firm i to firm j’s price in this case. Since neither firm will charge less than its unit 

cost (resulting in a negative profit for the lowest price firm), only two cases remain: one firm 

charges exactly c, or both firms charge exactly c. The former case is now shown to be false by 

contradiction. 

* *( )( )/2i iD p p c−
*
ip ε− * *( )(i iD p p cε ε− − − *

ip

iii)  * *
i jp p> =

In this case, firm j supplies all of the demand and makes zero profit. If firm j, however, charges 

, it still retains the entire market demand and makes a positive profit, resulting in a 

contradiction. The Nash equilibrium in the Bertrand model, therefore, must involve both firms 

charging the competitive price, i.e. . 

*
j jp p ε= +

* *
i jp p= =

The implications of the classic Bertrand model are that firms i) price at marginal cost and that 

firms ii) do not make positive, economic profits. These results constitute the Bertrand paradox 

because they imply that a competitive outcome occurs even in an industry with only two 

competitors. Interestingly, these results also suggest that the monopoly market equilibrium 

represents a special case (since the competitive outcome requires only two firms). A corollary to 

the paradox relates to entry into the market. Suppose a ‘small’ fixed cost (F = �) is required for 

entry into the market. If one firm enters the market, the second firm will not enter as long as F > 

0. Consequently, if one of the firms believes that F > 0, the outcome yields a market that is a 

monopoly. 

The relaxation of any of the classic assumptions weakens, if not eliminates, the paradox. First, if 

products are identical then consumers purchase from the firm with the lowest price. 

Consequently, product homogeneity places downward pressure on price. If firms’ products are not 

identical, however, then product differentiation alleviates some of this downward pressure. In this 

case, firms do not, in general, charge a price equal to their marginal cost of production. 
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Second, in the case of asymmetric unit costs, e.g. ci > cj, the Bertrand conclusions, in general, are 

not robust. Further, the existence of a strict capacity constraint represents a decreasing returns to 

scale technology. An example of a strict capacity constraint is a firm with a unit cost of c up to 

the constraint and then a cost of � for any greater output. More generally, marginal cost may 

increase ‘significantly’ with output. With capacity constraints, a firm cannot, by definition, 

satisfy the entire demand alone; a price equal to marginal cost is no longer an equilibrium. 

Suppose firms i and j charge marginal cost as in the classic solution. Suppose now that firm i 

faces a capacity constraint. If firm j now charges pj > c then firm i confronts all of the demand, 

which it is unable to satisfy. In this case, the residual consumers must purchase the product from 

firm j at the higher price. Firm j has a non-zero, residual demand at a price that exceeds its 

marginal cost, and as a result, it makes a positive profit. The classic solution, therefore, is not an 

equilibrium if (at least) one firm confronts a capacity constraint. 

Third, in a dynamic game, which allows for reactions over time, firm j would consider the trade-

off between the short run benefits of any price cuts and the long-run costs of a potential price war 

with firm i. 

III.B.2: Example 

The classic Bertrand duopoly model postulates that two duopolists in a market interact with each 

other through price competition. Since the previous section demonstrates that for the case of two 

duopolists with identical products, the unique Nash equilibrium is pi = pj = c, this example 

assumes differentiated products. Specifically, this game assumes that: 

• two firms (i = 1,2) produce heterogeneous products (qi) that are imperfect substitutes; 

• demand for firm i’s product is qi(pi, p-i) = a - pi + bp-i , where 0 < b < 2 is a parameter 

that determines the extent to which firm i’s product is a substitute for its rival’s product;  

• total cost of production is Ci(qi) = cqi, where marginal cost is constant at c and c < a; and 

that 

• firms simultaneously choose their respective prices from the feasible set, pi = [0,�). 

These assumptions give all of the required components of the strategic form. First, the players 

are, of course, the two firms that comprise the duopoly. Second, the strategies available to each 

firm are the feasible prices, where it is assumed that negative prices are infeasible and non-

negative prices are infinitely divisible. Third, each firm’s strategy space is denoted Si = [0,�), 

implying that a typical strategy is a price choice, pi � 0. Finally, it is necessary to specify the 

pay-off function of firm i as a function of its strategy and the strategy selected by the rival firm. 

A firm’s pay-off is described by its profit function. The generalised pay-off to firm i, ui(s1, s2), 

applied to this two-player strategic form game, therefore, is specified as: 

(8) . ( , ) ( , )[ ] ( )[ ]i
i i i i i i i i ip p q p p p c a p bp p c− − −Π = − = − + −
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Recall that the strategy pair, ( ), is a Nash equilibrium if, for each player i, * *
1 2,s s

(9) ui(si
*, s-i

*) > ui(si , s-i
*) ,  .i is S∀ ∈

Equivalently, each player must solve the optimisation problem: 

(10) . *
max

( , )i i i
i i

u s s
s S −∈

Applying this (generalised) optimisation to the Bertrand model implies that the price pair (pi
*, p-

i
*) is a Nash equilibrium if, for each firm (i = 1,2), pi

* solves: 

(11) . ( )* *
max

( , ) [ ]0
i

i i i i i
i

p p a p bp p cp − −Π = − +≤ < ∞ −

The first-order condition for firm i is 

(12a) . *2 0i
i i ia p bp c−Π = − + + =

Condition (12a) implies 

(12b) ( )* *1
2i ip a c bp−= + + . 

As a result, if (p1
*, p2

*) is a Nash equilibrium, the firms’ choices must satisfy: 

(13a) ( )* *
1 2

1
2

p a c bp= + + , and 

(13b) ( )* *
2 1

1
2

p a c bp= + + . 

Given (13a) and (13b), the equilibrium outcome of the Bertrand duopoly game is 

(14) * *
1 2 .

2
a c

p p
b

+
= =

−
 

Note that the demand function is unrealistic in the sense that if firm 1 charges an arbitrarily high 

price, demand is still positive for firm 1’s product, provided that firm 2 charges a sufficiently high 

price as well. The problem is sensible only if b < 2. 
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III.B.3: Applications to Electricity Markets 

The classic Bertrand model demonstrates that with i) product homogeneity and identical unit 

costs, ii) no capacity constraints, and with iii) the simultaneous choice of price by firms, 

significant competition occurs through which competitors have the incentive to undercut each 

other’s prices vigorously, resulting in a competitive outcome. An important rationale for the 

application of the Bertrand model to electricity markets is that, given the non-storability 

property of electricity, it may be subject to significant short-run price competition [1]. The 

motivation is that as long as price exceeds marginal cost and producers have sufficient capacity to 

meet demand, they will undercut each other’s prices in an effort to gain market share. 

In the classic Bertrand model, price competition under constant returns to scale yields an 

equilibrium price equal to marginal cost. Producers in electricity markets typically face capacity 

constraints. In the presence of capacity constraints, the Bertrand model does not necessarily 

predict that firms charge competitive prices. The basic intuition is that if a firm increases its 

price slightly above the competitive price, it loses some demand. This outcome is only a second-

order effect, however, because the firm experiences a first-order increase in its profit due to the 

higher price on the infra-marginal units sold. Consequently, in applying the Bertrand model to 

analyse price competition in electricity markets, it is important to account for capacity 

constraints, as well as for the rationing rule for demand, since the nature of these assumptions 

may affect the equilibrium outcomes. 

Further, electricity is a network industry, with a transmission network serving both producers 

and consumers that are spatially dispersed across it. As a result, transmission costs, specifically 

congestion costs and resistance losses, contribute to the divergence of (total) marginal cost, i.e. 

marginal production cost plus marginal transmission cost, between producers in two different 

network locations. Although price differences across locations in a network may certainly result 

from scarcity of supply or transmission services, these differences may enable producers to price 

discriminate on a spatial basis, i.e. they use geography to increase price at a location, and price 

differences between two locations may not be entirely cost-based. (This idea is distinct from the 

strategic manipulation of transmission constraints by producers [7]). 
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In an examination of U.S. deregulation proposals, Hobbs [14] computes price equilibria for a 

network model of spatial oligopoly in which both supply and demand are dispersed. Applying the 

Bertrand assumption to competitor behaviour in an oligopolistic electricity market setting, Hobbs 

finds that spatial heterogeneity in production costs and demand allows producers to practice 

‘shadow’ marginal cost pricing under certain conditions. With this marginal cost pricing, the ‘low 

cost’ producer sells at a price slightly less than the marginal cost of its ‘closest’ competing 

neighbour, where ‘closest’ is used in the context of cost. Consequently, Hobbs demonstrates that 

in the presence of capacity constraints and transmission costs, spatial price discrimination in an 

electricity network leads to prices above the marginal cost of supply (including the marginal cost 

of transmission services). 

The applicability of the Bertrand model to electricity markets depends on the specific modelling 

objectives and the market and institutional features that the model is intended to capture. Some 

of the economics/operations research supports the Bertrand model as a reasonable model of short-

run price competition under certain conditions. In general, Bertrand competition may realistically 

represent firm behaviour in an electricity market over ranges of generator output/operation where 

competing firms’ marginal costs are relatively ‘flat’ and excess capacity exists (these two factors 

may be correlated). The relevance of the Bertrand model may be more questionable when 

competing firms face ‘high’ demands and significant capacity constraints exist. These conclusions, 

however, are generalisations, and justifications for the use of the model must be analysed on a 

case-by-case basis, given the specific market context. 

III.C: Cournot 

III.C.1: Description 

In the classic model of Cournot duopoly, firms compete against each other using quantities as 

strategy choices [8]. Three basic assumptions set the stage for traditional Cournot competition. 

First, competing firms produce homogeneous products and have identical unit production costs. 

Second, firms ‘meet only once’ in the market and choose quantities non-cooperatively and 

simultaneously. The non-cooperative nature of the game implies that firms act in their own self-

interest, and the simultaneous aspect implies that each competing firm chooses its quantity 

without observing the choices of other firms. Third, given competing firms’ choices of quantities, 

an hypothetical ‘auctioneer’ chooses the price that equates demand and supply. Variants of the 

classic model vary assumptions on product homogeneity, identical firm unit costs, etc. In the 

Cournot model of duopoly, each firm correctly anticipates its rival’s quantity choice, such that 

the quantity it chooses in equilibrium maximises its profit (given the quantity choice by its rival). 

Assume that two firms (i, j) are duopolists that produce an identical product. Firms i’s profit 

function is 

(15)  ( , ) ( ) ( ),i
i j i j i i iq q P q q q C qΠ = + −
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where P is the market demand function, and Ci is firm i’s cost function. Assume that firm i’s 

profit function is concave in qi and twice differentiable. The first-order condition for profit 

maximisation is 

(16) [ ]( ) ( ) ( )i
i i j i i i i jP q q C q q P q q′ ′Π = + − + + = 0.  

The bracketed term [ ] in (16) is the price-cost margin, and it gives the profitability of an extra 

unit of output to firm i. The last term captures the effect of an extra unit of output on the 

profitability of inframarginal units of output, i.e. the production of an extra unit of output 

decreases the price by P�() on the qi units already produced by the firm. This term also 

illustrates the negative externality that exists between the two Cournot duopolists. Specifically, 

when selecting its output, firm i only accounts for the effect of the price change on its own output 

(qi), not on the industry output (qi + qj). As a result, firms choose output levels in equilibrium 

that exceed (in aggregate) the optimal level from the perspective of the entire industry. The 

solution to the classic Cournot model, therefore, produces an equilibrium price that is less than 

the monopoly price but greater than the competitive price. 

Further, a firm’s output decreases with its own marginal cost but increases with its competitor’s 

marginal cost. This feature of Cournot competition occurs because a relatively higher Cj leads 

firm j to reduce its output, which increases the residual demand to firm i. This conclusion is 

obtainable for general demand and cost functions provided that: i) firms’ reaction functions are 

downward-sloping, e.g. quantities are strategic substitutes, and ii) firms’ reaction functions 

intersect with each other only once, i.e. there exists a unique Cournot equilibrium (see Appendix 

A). 

Kreps and Scheinkman [K-S] analyse the Cournot model in the context of ex ante investment and 

ex post price competition [16]. Specifically, [K-S] examine a two-period game with capacity 

constraints in which two firms simultaneously choose their capacities in the first period and then 

simultaneously choose prices - within their capacity limits - in the second period. They show that 

if the demand function is concave and if the rationing rule is efficient then the outcome of this 

game is equivalent to a one-period game in which firms simultaneously choose quantities and an 

auctioneer determines the market-clearing price, i.e. that this two-period outcome is precisely the 

Cournot outcome. This outcome occurs because the competition in the first period reduces 

capacities to such an extent that second period price (Bertrand) competition is effectively pre-

empted. The result is important because it implies that ‘quantity competition’ is really a choice of 

scale that yields competing firms’ cost functions, which determine the conditions of price 

competition. In addition, critics have often faulted the Cournot model because firms, not an 

auctioneer, ultimately choose prices. The [K-S] two-stage model to a large extent vindicates the 

Cournot model because it effectively subsumes price competition. 
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An important issue with the Cournot model is its handling of the price formation process. Since 

Cournot competitors choose quantities, there is no explicit representation of a bidding process. 

Prices ‘fall out’ of the demand function based on the aggregate Cournot quantities of the 

competitors in the market. Further, Cournot rivals do not respond to price changes; therefore, 

Cournot results are sensitive to both the form of the demand function and the demand elasticity. 

In general, a given firm will not have an unlimited scope to push prices increasingly higher 

without a response from its rivals. 

In general, the Cournot model is a popular equilibrium model of imperfect competition in the 

economics literature for several reasons. First, the Cournot solution yields a negative correlation 

between the number of firms in the industry and profitability (see Appendix A). This correlation 

appears consistent with observations of market concentration in many industries. Second, the 

strategy by which firms withhold output in order to increase the market price above marginal 

cost appears to represent behaviour in some real world oligopoly markets. 

III.C.2: Example 

The classic Cournot game of duopoly postulates that two duopolists in a market interact with 

each other through quantity competition. One version of the game assumes that: 

• two firms (i = 1,2) produce quantities (qi) of a homogeneous product; 

• total cost of production of qi for firm i is Ci(qi) = cqi, where marginal cost is constant at c, 

with c < a; 

• inverse demand for the product is P(Q) = a - Q for Q < a and P is the market price with 

P(Q) = 0 for Q � a, and Q = qi + q-i  ; and that 

• firms simultaneously choose their respective output (qi) from the feasible set qi = [0,�) and 

sell it at the market-clearing price. 

These assumptions give all of the required components of the strategic form. First, the players are 

the two firms that comprise the duopoly. Second, the strategies available to each firm are the 

feasible quantities, and it is assumed that the outputs are infinitely divisible. Third, each firm’s 

strategy space is denoted Si = [0,�), implying that a strategy satisfies qi � 0. It is arguable that 

extremely large quantities, e.g. ( ), should not be feasible; however, neither firm will 

produce q

ε∞ −

i > a since P(Q) = 0 for Q � a. Finally, it is necessary to specify the pay-off function of 

firm i as a function of its strategy and the strategy selected by the rival firm. In the Cournot 

duopoly, a firm’s pay-off is described by its profit function. The generalised pay-off to firm i, ui(s1, 

s2), applied to this two-player strategic form game, therefore, is specified as: 

(17) �i(qi, q-i) = qi[P(qi + q-i) – c] = qi[a – (qi + q-i) – c]. 

Recall that the strategy pair, ( ), is a Nash equilibrium if, for each player i, * *
1 2,s s
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(18) ui(si
*, s-i

*) > ui(si , s-i
*) ,  .i is S∀ ∈

Equivalently, each player must solve the optimisation problem: 

(19) . *
max

( , )i i i
i i

u s s
s S −∈

Applying this (generalised) optimisation to the Cournot model implies that the quantity pair (qi
*, 

q-i
*) is a Nash equilibrium, if for each firm (i = 1,2), qi

* solves: 

(20) * *
max

( , ) ( )0
i

i i i i i
i

q q q a q q cq − −⎡ ⎤Π = − + −⎣ ⎦≤ < ∞  

If q-i
* < (a - c), the first-order condition for firm i’s optimisation problem is both necessary and 

sufficient (shown later). The first-order condition for firm i is 

(21a) . *2 0i
i i ia q q c−Π = − − − =

Condition (21a) implies 

(21b) * *1
( )

2i iq a c q−= − − . 

As a result, if (q1
*, q2

*) is a Nash equilibrium, the firms’ choices must satisfy: 

(22a) ( )* *
1 2

1
2

q a q= − − c , and 

(22b) ( )* *
2 1

1
2

q a q= − − c . 

Given (22a) and (22b), the symmetric equilibrium outcome of the Cournot duopoly game is 

(23) * *
1 2 .

3
a c

q q
−

= =  

The solution value is less than (a – c), confirming that the first-order condition is both necessary 

and sufficient. 

Each firm would like to be a monopolist in this market. In this case, a firm would choose qi to 

maximise �i(qi,0), producing the monopoly quantity, qm = (a - c)/2 and earning the monopoly 

profit, �m(qm,0) = (a - c)2/4. Since there are two firms in the market, however, duopoly profits 

are maximised by setting joint output (q1 + q2) equal to the monopoly output, qm, which occurs if 

each firm produces the duopoly output, qi = qm/2. These output levels, however, are not an 

equilibrium because each firm has an incentive to increase output above qm/2, since the monopoly 

price, pm(qm/2 + qm/2) is high. Of course, such behaviour drives the market price lower. This 

incentive to deviate can be verified by checking mathematically that q1 = qm/2 is not firm 1’s best 

response to firm 2’s output, q2 = qm/2. 
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III.C.3: Applications to Electricity Markets 

Applications of the Cournot model to electricity markets assume several possible forms. The most 

common application is based on the assumption that individual firms, i.e. generation companies, 

do not alter their output levels given the output levels of their rivals. Other applications are that 

firms do not change their sales to a service region in response to the sales of other firms, and 

firms take the transmission flows on the network that other firms’ generation creates, as given in 

their decision-making. 

The [K-S] interpretation of the original Cournot framework is not uncommonly cited in the 

literature to motivate the use of the Cournot model in an electricity market context since 

producers in electricity markets often face capacity constraints. The [K-S] results, however, may 

not be fully applicable in this setting because the results are sensitive to the type of rationing 

that occurs during the second period [9]. Since electricity is non-storable and varies with time, e.g. 

off-peak versus peak demand, if generators withdraw capacity during peak times, it is unclear 

that such capacity limitation will affect non-peak periods. Consequently, citing the [K-S] results 

to justify the use of the Cournot model in an electricity market context - without some 

distinction between the periods of demand to which the model may be more realistically 

applicable, e.g. off-peak versus peak - is debatable. 

Other motivations for use of the Cournot model include its conceptual simplicity and its 

computational flexibility. Specifically, given that POOLCO markets essentially use an ISO-based 

auction to match bids and offers to clear the market, the hypothetical auctioneer, which 

determines the market-clearing price in Cournot models, is conceptually appealing. From a 

computational perspective, the Cournot model is also appealing because equilibria can be 

obtained from both simple and complex models without overly restrictive assumptions on 

functional forms, etc. 

The sensitivity of the Cournot results to the form of the demand function and to the demand 

elasticity has important implications for modelling electricity markets. Since low or near-zero 

price elasticities of demand are associated with the short-run demand for electricity and ancillary 

services, the Cournot model may predict unrealistically (and possibly irrelevant) equilibria under 

certain conditions. Given these issues, the ‘appropriate’ demand representation in a Cournot 

model of an electricity market is not necessarily clear. 
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The applicability of the Cournot model to electricity markets depends on the specific modelling 

objective(s) and the market and institutional features that the model is intended to capture. In 

general, Cournot competition may realistically represent firm behaviour in an electricity market 

over ranges of generator output/operation where competing firms’ marginal costs are relatively 

‘steep’ and capacity constraints exist (these two factors may be correlated). The presence of 

capacity constraints should not necessarily be the exclusive motivation for use of the Cournot 

model. These conclusions are generalisations, however, and justifications for the use of the 

Cournot model must be analysed on a case-by-case basis, given the specific market context. 

III.D: Supply Function Equilibrium 

III.D.1: Description 

The third model for the analysis of imperfect competition is the supply function equilibrium 

model (SFE), in which firms compete with each other through the simultaneous choice of supply 

functions [15]. Klemperer and Meyer developed SFE in order to model competition in the 

presence of demand uncertainty. The idea behind their model is that even if an oligopolist knows 

its competitors’ outputs, the presence of demand uncertainty implies that the oligopolist faces 

many possible demand profiles. Accordingly, management’s decisions about the size, structure, 

corporate values, and decision rules of the firm implicitly determine a supply function that 

identifies the outputs that the firm will sell at prices that the market will accept. Such a supply 

function provides the firm with flexibility in adapting to changing business conditions, e.g. 

demand uncertainty, which simpler strategies that commit to either fixed prices or quantities 

preclude. 

The SFE model is more intuitively appealing than the Bertrand and Cournot models because it 

allows for a strategy space in which competing firms choose entire supply functions. The 

strategies of the Bertrand and Cournot models are limited because firms choose either prices or 

quantities. Consistent with the Nash equilibrium solution concept that the three models share, 

each firm’s choice of a supply function occurs simultaneously. In general, SFE price equilibria are 

generally between the Bertrand and Cournot extremes. 

The ‘intermediacy’ of the SFE equilibrium results follows from the structure of the model relative 

to the Bertrand and Cournot models. Specifically, firm 2’s choice of a supply function impacts 

firm 1’s residual demand and vice versa. Given an increase in the price, two effects occur: i) the 

quantity demanded by the market decreases and the ii) quantity supplied by firm 2 increases. 

These effects make firm 1’s residual demand function more price-sensitive than the market 

demand function. Consequently, supply function competition causes each firm to make its rival’s 

residual demand function more sensitive to price relative to the market demand. 
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In contrast, the Cournot and Bertrand models are limiting cases. In the Cournot model, supply is 

completely unaffected by price, and the residual demand function is no less sensitive than the 

market demand function; the opposite is true for the Bertrand model. Equivalently, these models 

exogenously impose vertical supply curves on firms (Cournot) or horizontal supply curves on 

firms (Bertrand). By fixing either quantities or prices at given levels, these models force the other 

variable to accommodate all of the adjustments necessary to achieve a market-clearing outcome. 

In this sense, the Cournot and Bertrand models represent extremes, ranging from no response to a 

price increase by rivals (Cournot) to an infinitely large response by rivals (Bertrand). 

This discussion naturally leads to the question of why firms would willingly choose supply 

functions, as opposed to quantities, as strategies if the supply function equilibrium results in a 

less profitable outcome for both firms. The answer is demand uncertainty. Suppose that two firms 

compete against each other in a market by choosing supply functions. The firms know the market 

demand curve is linear with a (fixed) slope, but they do not know its position, which is variable. 

Suppose that firm 1 is playing its optimal strategy and firm 2 correctly anticipates firm 1’s 

strategy choice. Firm 2’s optimal strategy then depends on the level of demand: if demand is 

‘high’ then firm 2 should bid a high quantity to maximise its profit, and likewise, if demand is 

‘low’ then firm 2 should bid a low quantity to maximise its profit. Firm 2 can implement this 

strategy by bidding a supply function that specifies a low quantity if the price is ‘low’ and a high 

quantity if the price is ‘high’. The same exercise applies to firm 1. 

An important interpretation of the SFE results is that they indicate the conditions under which 

the Cournot and Bertrand models approximate oligopolistic competition. Quantity-setting 

(Cournot) models may be more appropriate than price-setting (Bertrand) models if the number of 

firms is small, products are differentiated, demand certainty is additive, or marginal cost is ‘steep’ 

relative to demand. Alternatively, price-setting models may be more appropriate than quantity-

setting models if the number of firm is large, products are more homogeneous, demand 

uncertainty is higher at lower prices, or marginal cost is ‘flat’ relative to demand. 

A major weakness in the SFE model is that equilibria are difficult to calculate without restrictive 

assumptions on the number of firms and the form of firm costs, capacity constraints, and bid 

(supply) functions. Further, there may be no equilibrium, or multiple equilibria may exist. In the 

latter case, critics contend that the likelihood of multiple equilibria gives the model poor 

predictive value. 
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III.D.2: Applications to Electricity Markets 

Green and Newbery [12] first modified the SFE model to represent supply function bidding in a 

POOLCO-based electricity market. In order to make the analysis tractable, they make several 

simplifying assumptions: i) each firm submits a ‘smooth’ (as opposed to step) supply function 

that relates quantity to price, and ii) firms do not receive a ‘start price’ each time they initiate 

generation (inclusion of a start price introduces a non-convexity into the problem). They first 

examine the case of a symmetric duopoly and find a range of possible equilibria and demonstrate 

that the inclusion of generator capacity constraints in the problem reduces the range of equilibria. 

Green and Newbery then examine the case of an asymmetric duopoly. In the asymmetric case, the 

larger firm tends to choose a more inelastic supply function (relative to the symmetric case) since 

it tends to gain more from a price increase. This action gives the smaller firm a relatively inelastic 

residual demand and an incentive to increase its price in turn. The net effect is to create a more 

inelastic industry supply curve. Green and Newbery then simulate the U.K. spot market under 

the industry assumption of a symmetric duopoly. 

The SFE model may serve as a more realistic approach to modelling imperfect competition in 

certain markets. SFE strategies are equivalent to the submission of production schedules or offer 

curves that explicitly map a set of prices to a set of associated quantities. Consequently, the SFE 

model matches well with a centralised market-clearing mechanism, such as a POOLCO, that 

utilises an ISO-based auction process in which each generator offers a supply function that 

conveys an amount of capacity that it is willing to make available to the market at a specific 

price. Electricity markets may be the most realistic example of a market to which the SFE model 

is applicable [4,12]. 

A major obstacle to the realistic application of SFE to models of electricity networks is 

computational difficulty. Typically, SFE studies are designed for simple systems, e.g. three or four 

nodes. With the representation of large transmission networks and many generators subject to 

capacity constraints, a generator’s optimisation problem is often non-convex and may yield 

multiple, local optima. In these cases, it is necessary to use strong limitations on the form of the 

bid functions, e.g. a linear bid function with only the slope variable; otherwise, it becomes 

necessary to impose unrealistic assumptions, e.g. firms possess identical marginal cost functions. 
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IV. Appendix A: Technical Notes on the Cournot Model 

IV.A: Concavity of the Firm’s Objective Function 

Since firm i’s objective function contains only a single choice variable (qj is a parameter), 

concavity simply requires that  < 0, which implies: i
iiΠ

(A1) . 2 0i
ii i iP q P C′ ′′ ′′Π = + − <

Condition (A1) is satisfied if the inverse demand function is concave ( ), and the cost 

function is convex ( ). These assumptions, for example, are satisfied for linear demand 

functions ( ) and constant returns to scale technologies ( ). 

0P ′′ ≤

0iC ′′>

0P ′′ = 0iC ′′=

In addition, note that the concavity of the demand function is sufficient for quantities to be 

strategic substitutes (  < 0) since  and . i
ijΠ i

ij iP q P′Π = + ′′ 0P ′ <

IV.B: Uniqueness of Equilibrium 

Given that a pure strategy Nash equilibrium exists for the Cournot model, such an equilibrium 

may not necessarily be unique. Multiple equilibria occur when firms’ reaction functions intersect 

more than once. The attainment of an unique equilibrium requires that firms’ reaction functions: 

• intersect only once; and that they 

• satisfy an asymptotic stability condition. 

For purposes of examining the condition for asymptotic stability, consider the two-firm case. 

Assume that each firm’s profit function is strictly concave in its own output. Recall that firm i’s 

first-order condition for profit maximisation is: 

(A2) . ( ( ), ) 0i
i i j jR q qΠ =

The slope of the reaction function for firm i is: 

(A3) 
( ( ), )

( )
( ( ), )

i
ij i j j

i j i
ii i j j

R q q
R q

R q q

Π
′ =

Π
, 

where  indicates the absolute value.  

A sufficient condition for asymptotic stability of an equilibrium is that 

(A4a) ( ) ( ) 1i j j iR q R q′ ′ < , 

which implies, 

(A4b) ( )( ) ( )( )j ji i
ij iiij jjΠ Π < Π Π . 
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IV.C: Industry Size and Profitability 

In the Cournot model, industry size and profitability are inversely related. For purposes of 

exposition (and without loss of generality), assume: 

• an industry comprises i = 1,…,n identical firms that behave as Cournot players in the 

market for an identical product; 

• the linear market demand facing the industry is P(Q) = 1 – Q, where Q represents the 

aggregate output of the firms; and 

• all firms have the identical cost structure Ci(qi) = cqi , with c < 1. 

A representative firm (i) solves the following profit maximisation problem: 

(A5a) , [ ]
max

ˆ( , ) ( )
0

i
i i

i
q q P Q c q

q −Π = −≤ < ∞ i

n

n

i

where . Since all rival firms are identical, their outputs will be the 

same; therefore, let . Rewriting condition (A5a) gives: 

1 1 1ˆ ( ,..., , ,..., )i i iq q q q q− − +=

1 1 1... ...i iq q q q q− += = = = = =

(A5b) . [ ]
max

ˆ( , ) 1 ( ( 1) )
0

i
i i i

i
q q q n q c q

q −Π = − + − −≤ < ∞

The first-order condition for profit maximisation is 

(A6) , 1 2 ( 1) 0i
i iq n q cΠ = − − − − =

which is equivalent to 

(A7) . 1 0i
i iq Q cΠ = − − − =

Using the fact that firm i is also identical to the other firms (qi = q) yields the equilibrium output 

(q*) for each firm: 

(A8) * 1
1

c
q

n
−

=
+

. 

Given the demand function, the market price is 

(A9) 
(1 )

1
1

n c
P

n
⎡ −

= − ⎢ ⎥
+⎢ ⎥⎣ ⎦

⎤
, 

which is more usefully rewritten as 

(A10) ( )1
1

c
P c

n
−

= +
+

. 

Firm i’s profit, therefore, is 

(A11) ( )
21

1
i c

n
−

Π =
+

. 
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From (A11), each firm’s profit decreases with the number of firms in the industry. From (A10), 

the market price also decreases with the number of firms in the industry, and it follows that the 

aggregate (industry) profit, n�, decreases as well. As a result, for a very large number of firms 

(n��), the market price approaches the competitive price, i.e. P = c. Consequently, a Cournot 

equilibrium with a very large number of firms approximates a competitive equilibrium. 
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